981 resultados para Ro-Tap shaker
Resumo:
Se hace una descripción de las cinco series de vegetación que constituyen el paisaje vegetal de la cuenca del rio Bidasoa en Navarra (norte de España) y se aportan tablas fitosocíologicas de las comunidades que representan la etapa madura de cada serie asi como una tabla de los brezale sdel territorio. Se describen en ellas dos nuevas subasociaciones Polytricho setiferi-Fraxinetum excelsioris carpinetosum betuli y Tamo communis-Quercetum roboris fagetosum sylvticae.
Resumo:
Se continúa con la presente publicación el catálogo de la flora vascular del cañón del rio Duratón (Segovia). Se citan 106 táxones de las familias comprendidas entre Rubiaceae y Compositae, resaltando las aportaciones corolágicas.
Resumo:
Se inicia con esta publicación el catálogo de la flora vascular del Cañón del río Duratón (Segovia). Se citan 162 taxones de las familias comprendidas entre Equisetaceae y Grossulariaceae. Se realizan numerosas aportaciones corológicas.
Resumo:
In this paper, the vegetal landscape from higher part of Bernesga river (León province) by means of several climatophilous and edaphophilous vegetation series. A mapa of vegetasion series from higher part of Bernesga rrver is presenled.
Disponibilidad del recurso hídrico en la microcuenca del río Bermúdez. Región central de Costa Rica.
Resumo:
La microcuenca del río Bermúdez es parte de la principal zona de explotación hídrica en la región Central de Costa Rica, razón por la cual se realiza un diagnóstico de la disponibilidad del recurso hídrico en esta microcuenca donde se identifican las áreas con mayor problemática de disponibilidad de este recurso. Para ello se calculó un balance hídrico mensual, según uso del suelo, unidad geomorfológica y zona climática. Con base en este balance se determinó y clasificó la disponibilidad del recurso, identificando en la microcuenca solamente tres categorías: alta, media y moderada. No existen áreas de baja disponibilidad de recurso hídrico lo que demuestra que la oferta es suficiente, sin embargo, existe una presión importante sobre el recurso hídrico pues más de la mitad del área de la microcuenca se encuentra con una disponibilidad moderada.
Resumo:
This paper presents a new strategy, “state-by-state transient screening”, for kinetic characterization of states of a multicomponent catalyst as applied to TAP pulse-response experiments. The key idea is to perform an insignificant chemical perturbation of the catalytic system so that the known essential characteristics of the catalyst (e.g. oxidation degree) do not change during the experiment. Two types of catalytic substances can be distinguished: catalyst state substances, which determine the catalyst state, and catalyst dynamic substances, which are created by the perturbation. The general methodological and theoretical framework for multi-pulse TAP experiments is developed, and the general model for a one-pulse TAP experiment is solved. The primary kinetic characteristics, basic kinetic coefficients, are extracted from diffusion–reaction data and calculated as functions of experimentally measured exit-flow moments without assumptions regarding the detailed kinetic mechanism. The new strategy presented in this paper provides essential information, which can be a basis for developing a detailed reaction mechanism. The theoretical results are illustrated using furan oxidation over a VPO catalyst.
Resumo:
Thin-zone TAP reactor is presented as a basis of the new state-by-state transient screening approach which has been proposed by the authors for non-steady-state kinetic characterization of industrial catalysts. The general thin-zone TAP reactor model is described, and its mathematical status is justified analytically. It is shown that this model provides high enough accuracy to be applicable in the wide conversion interval (up to 90%), which is an important advantage of this approach compared with the traditional differential reactor.
Resumo:
The state-by-state transient screening approach based on a pulse-response thin-zone TAP experiment is further developed whereby single-pulse kinetic tests are treated as small perturbations to catalyst compositions and analyzed using integral method of moments. Results on three primary kinetic characteristics, termed basic kinetic coefficients, are presented. These three coefficients were introduced as main observables from experimentally measured TAP-responses in a kinetic-model-free manner. Each was analytically determined from moments of responses with no assumption about the detailed kinetic model. In this paper, the inverse question of how well these coefficients represent the time evolution of the observed responses is addressed. Sets of three basic kinetic coefficients are calculated from model and experimental responses and these calculated values are used to generate 3-coefficient curves in a kinetic-model-free manner. The comparison of these 3-coefficient curves with original responses shows that three basic kinetic coefficients can be sufficient to describe the observed kinetics of exit flow time dependencies with no assumption regarding the detailed kinetic model.
Resumo:
We study the influence of non-ideal boundary and initial conditions (BIC) of a temporal analysis of products (TAP) reactor model on the data (observed exit flux) analysis. The general theory of multi-response state-defining experiments for a multi-zone TAP reactor is extended and applied to model several alternative boundary and initial conditions proposed in the literature. The method used is based on the Laplace transform and the transfer matrix formalism for multi-response experiments. Two non-idealities are studied: (1) the inlet pulse not being narrow enough (gas pulse not entering the reactor in Dirac delta function shape) and (2) the outlet non-ideality due to imperfect vacuum. The effect of these non-idealities is analyzed to the first and second order of approximation. The corresponding corrections were obtained and discussed in detail. It was found that they are negligible. Therefore, the model with ideal boundary conditions is proven to be completely adequate to the description and interpretation of transport-reaction data obtained with TAP-2 reactors.
Resumo:
The work presents the results of an extensive survey of tap water quality in Kuala Lumpur.
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.