894 resultados para Ring opening metathesis polymerization
Resumo:
The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in ‘green’ nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.
Resumo:
p-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3- hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized a-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ?-ethynyl-P3HT and a,?-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.
Resumo:
Oxysterols (OS), the polyoxygenated sterols, represent a class of potent regulatory molecules for important biological actions. Cytotoxicity of OS is one of the most important aspects in studies of OS bioactivities. However, studies, the structure-activity relationship (SAR) study in particular, have been hampered by the limited availability of structurally diverse OS in numbers and amounts. The aim of this project was to develop robust synthetic methods for the preparation of polyhydroxyl sterols, thereof, evaluate their cytotoxicity and establish structure-activity relationship. First, we found hydrophobicity of the side chain is essential for 7-HC's cytotoxicity, and a limited number of hydroxyl groups and a desired configuration on the A, B ring are required for a potent cytotoxicity of an OS, after syntheses and tests of a number of 7-HC's analogues against cancer cell lines. Then polyoxygenation of cholesterol A, B rings was explored. A preparative method for the synthesis of four diastereomerically pure cholest-4-en-3,6-diols was developed. Epoxidation on these cholest-4-en-3,6-diols showed that an allyl group exerts an auxiliary role in producing products with desired configuration in syntheses of the eight diastereomerically pure 45-epoxycholestane-3,6-diols. Reduction of the eight 45-epoxycholestane-3,6-diols produced all eight isomers of the cytotoxic 5α-acholestane 3β,5,6β-triol (CT) for the first time. Epoxide ring opening with protic or Lewis acids on the eight 45-epoxycholestane-3,6-diols are carefully studied. The results demonstrated a combination of an acid and a solvent affected the outcomes of a reaction dramatically. Acyl group participation and migration play an important role with numbers of substrates under certain conditions. All the eight 4,5-trans cholestane- 3,4,5,6-tetrols were synthesised through manipulation of acyl participation. Furthermore these reaction conditions were tested when a number of cholestane-3,4, 5,6,7-pentols and other C3-C7 oxygenated sterols were synthesised for the first time. Introduction of an oxygenated functional group through cholest-2-ene derivatives was studied. The elimination of 3-(4-toluenesulfonate) esters showed the interaction between the existing hydroxyls or acyls with the reaction centre often resulted in different products. The allyl oxidation, epoxidation and Epoxide ring opening reactions are investigated with these cholest-2-enes.
Resumo:
International audience
Resumo:
Porous polymer particles are used in an extraordinarily wide range of advanced and everyday applications, from combinatorial chemistry, solid-phase organic synthesis and polymer-supported reagents, to environmental analyses and the purification of drinking water. The installation and exploitation of functional chemical handles on the particles is often a prerequisite for their successful exploitation, irrespective of the application and the porous nature of the particles. New methodology for the chemical modification of macroreticular polymers is the primary focus of the work presented in this thesis. Porous polymer microspheres decorated with a diverse range of functional groups were synthesised by the post-polymerisation chemical modification of beaded polymers via olefin cross metathesis. The polymer microspheres were prepared by the precipitation polymerisation of divinylbenzene in porogenic (pore-forming) solvents; the olefin cross-metathesis (CM) functionalisation reactions exploited the pendent (polymer-bound) vinyl groups that were not consumed by polymerisation. Olefin CM reactions involving the pendent vinyl groups were performed in dichloromethane using second-generation Grubbs catalyst (Grubbs II), and a wide range of coupling partners used. The results obtained indicate that high quality, porous polymer microspheres synthesised by precipitation polymerisation in near-θ solvents can be functionalised by olefin CM under very mild conditions to install a diverse range of chemical functionalities into a common polydivinylbenzene precursor. Gel-type polymer microspheres were prepared by the precipitation copolymerisation reaction of divinylbenzene and allyl methacrylate in neat acetonitrile. The unreacted pendent vinyl groups that were not consumed by polymerisation were subjected to internal and external olefin metathesis-based hypercrosslinking reactions. Internal hypercrosslinking was carried out by using ring-closing metathesis (RCM) reactions in toluene using Grubbs II catalyst. Under these conditions, hypercrosslinked (HXL) polymers with specific surface areas around 500 m2g-1 were synthesised. External hypercrosslinking was attempted by using CM/RCM in the presence of a multivinyl coupling partner in toluene using second-generation Hoveyda-Grubbs catalyst. The results obtained indicate that no HXL polymers were obtained. However, during the development of this methodology, a new type of polymerisation was discovered with tetraallylorthosilicate as monomer.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.
Resumo:
The impellent global environmental issues related to plastic materials can be addressed by following two different approaches: i) the development of synthetic strategies towards novel bio-based polymers, deriving from biomasses and thus identifiable as CO2-neutral materials, and ii) the development of new plastic materials, such as biocomposites, which are bio-based and biodegradable and therefore able to counteract the accumulation of plastic waste. In this framework, this dissertation presents extensive research efforts have been devoted to the synthesis and characterization of polyesters based on various bio-based monomers, including ω-pentadecalactone, vanillic acid, 2,5-furan dicarboxylic acid, and 5-hydroxymethylfurfural. With the aim of achieving high molecular weight polyesters, different synthetic strategies have been used as melt polycondensation, enzymatic polymerization, ring-opening polymerization and chain extension reaction. In particular, poly(ethylene vanillate) (PEV), poly(ω-pentadecalactone) (PPDL), poly(ethylene vanillate-co-pentadecalactone) (P(EV-co-PDL)), poly(2-hydroxymethyl 5-furancarboxylate) (PHMF), poly(ethylene 2,5-furandicarboxylate) (PEF) with different amount of diethylene glycol (DEG) unit amount, poly(propylene 2,5-furandicarboxylate) (PPF), poly(hexamethylene 2,5-furandicarboxylate), (PHF) have been prepared and extensively characterized. To improve the lacks of poly(hydroxybutyrate-co-valerate) (PHBV), its minimal formulations with natural additives and its blending with medium chain length PHAs (mcl-PHAs) have been tested. Additionally, this dissertation presents new biocomposites based on polylactic acid (PLA), poly(butylene succinate) (PBS), and PHBV, which are polymers both bio-based and biodegradable. To maintain their biodegradability only bio-fillers have been taken into account as reinforcing agents. Moreover, the commitment to sustainability has further limited the selection and led to the exclusive use of agricultural waste as fillers. Detailly, biocomposites have been obtained and discussed by using the following materials: PLA and agro-wastes like tree pruning, potato peels, and hay leftovers; PBS and exhausted non-compliant coffee green beans; PHBV and industrial starch extraction residues.
Resumo:
Block copolymers containing isosorbide succinate and L-lactic acid repeating units with different mass compositions were synthesized in two steps: bulk ring-opening copolymerization from L-lactide and poli(isosorbide succinate) (PIS) preoligomer, in the presence of tin(II) 2-ethylhexanoate as catalyst. followed by chain extension in solution by using hexamethylene diisocyanate. Poly(L-lactide) (PLLA) and a chain extension product from PIS were also obtained, for comparison. SEC, (1)H and (13)C NMR, MALDI-TOFMS, WAXD, DSC, TG, and contact angle measurements were used in their characterization. The incorporation of isosorbide succinate into PLLA main backbone had minor effect on the thermal stability and the T(g) of the products. However, it reduced the crystallinity and increased the surface energy in relation to PLLA. Nonwoven mats of the block copolymers and PLLA obtained by electrospinning technique were submitted to fibroblasts 3T3-L1 cell culture. The copolymers presented enhanced cell adhesion and proliferation rate as revealed by MTT assay and SEM images. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins (MC) are a family of hepatotoxic cyclic heptapeptides produced by a number of different cyanobacterial species. Considering the recent advances in the characterization of deprotonated peptides by mass spectrometry, the fragmentation behavior of four structurally related microcystin compounds was investigated using collision-induced dissociation (CID) experiments on an orbitrap mass spectrometer. It is demonstrated in this study that significant structural information can be obtained from the CID spectra of deprotonated microcystins. A predominant ring-opening reaction at the isoMeAsp residue, as well as two major complementary fragmentation pathways, was observed, reducing the complexity of the product ion spectra in comparison with spectra observed from protonated species. This proposed fragmentation behavior was applied to characterize [Leu(1)]MC-LR from a cyanobacterial cell extract. In conclusion, CID spectra of microcystins in the negative ion mode provide rich structurally informative mass spectra which greatly enhance confidence in structural assignments, in particular when combined with complementary positive ion CID spectra. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
O rearranjo [3,3]-sigmatrópico térmico (180ºC) de diferentes N-alil-N-sililoxi enaminas foi estudado. Os respectivos produtos de rearranjo (éteres de óxima) foram obtidos com rendimentos elevados (80%). A regiosselectividade, [3,3] vs [1,3], e a diastereosselectividade do processo foram elevadas, superior a 99% e aproximadamente 80%, respectivamente. Foi demonstrada a importância do grupo sililoxilo na promoção do rearranjo face a substratos sem este tipo de substituição. Posteriormente, foi estudada a possibilidade de aceleração aniónica deste tipo de rearranjo por formação de oxianião ligado ao átomo de azoto. A estratégia seguida para a formação do mesmo, consistiu na O-dessililação de diferentes N-alil-N-sililoxi enaminas tendo-se obtido as nitronas correspondentes ou produtos de ciclização. Num exemplo envolvendo um derivado de isoxazole-5-(2H)-ona foi observado um aumento de velocidade do rearranjo por reacção com ião etoxilo. Este aumento de velocidade foi atribuído à abertura de anel do N-O éster cíclico para o N-oxianião, seguida de rearranjo e posterior fecho. Métodos alternativos de aceleração do rearranjo por geração de carga positiva, parcial ou completa, no átomo de azoto levaram apenas à dessililação das N-alil-N-sililoxi enaminas. ABSTRACT - [3,3]-sigmatropic rearrangement of a variety of N-allyl-N-silyloxy enamines was studied. The corresponding rearrangement products (oxime-ethers) were obtained in high yields (80%). High regioselectivity, [3,3] vs [1,3] (> 99%) and in appropriate cases, diastereoselectivity (80%) were observed. The importance of the silyloxy group in promoting the rearrangement, in relation to substrates lacking this functionality, is underlined. The possible anionic acceleration of the rearrangements was next examined by O-desilylation the N-silyloxy group bonded to the nitrogen. Attempted generation of these species however, was found to lead either to the corresponding nitrones or to cyclization products. In one particular example involving an isoxazol-5-(2H)-one derivative rate enhancement of rearrangement was indeed observed with ethoxide ion. It is tentatively attributed to ring opening of the cyclic N-O ester to the N-oxyanion ethyl ester followed by rearrangement and subsequent reclosure. Alternative methods to accelerate the process by generating a partial or complete positive charge on the nitrogen atom led only to desilylation.
Resumo:
Aziridines, a class of organic compounds containing a three membered heterocycle with a nitrogen atom, are extremely valuable molecules in organic and medicinal chemistry. They are frequently used as versatile precursors in the synthesis of natural products, and many biologically active molecules possess the aziridine moiety. The reactivity of aziridines has been studied, for example, in ring-opening reactions with thiols. However, not much interest seems to be given to reactions of aziridines in aqueous media, despite the numberless advantages of using water as solvent in organic chemistry. The nucleophilic ring-opening reaction of aziridines in aqueous media was here explored. Following the Kaplan aziridine synthetic methodology, in which pyridinium salts undergo a photochemical transformation to give bicyclic vinyl aziridines, new aziridines were synthetized. Their nucleophilic ring-opening reaction in water under physiological conditions was investigated and a range of sulphur, nitrogen, carbon and oxygen nucleophiles tested. Thiols, anilines and azide proved to be good nucleophiles to react with the aziridines, giving the ring-opening product in moderate to good yields. The best results were obtained with thiols, more specifically with cysteine-derived nucleophiles. Preliminary results show that these bicyclic vinyl aziridines can modify calcitonin, a peptide containing two cysteine amino acids residues, grating them the potential to be used in bioconjugation as ligands to cysteine-containing proteins, or even as enzyme inhibitors of, for example, cysteine proteases. Additionally, exploratory investigations suggest that the separation of both enantiomers of the bicyclic vinyl aziridine can be performed by taking advantage of an enzymatic methodology for the resolution of racemic secondary alcohols. Both enantiomers would be highly valuable as precursors in the synthesis of enantiomerically pure molecules, as no other method is currently reported for their separation.
Resumo:
Tese de Doutoramente em Ciências (área de especialização em Química).
Resumo:
Cyclizations, Lewis acids, silicon, terpenoids, total synthesis, desymmetrization, enantiselective desymmetrization, ringclosing metathesis, asymmetric ring-closing metathesis, Brevicomin
Resumo:
A series of cis-configured epoxides and aziridines containing hydrophobic moieties and amino acid esters,were synthesized as new potential inhibitors of the secreted aspartic protease 2 (SAP2) of Candida albicans. Enzyme assays revealed the N- benzyl-3-phenyl-substituted aziridines 11 and 17 as the most potent inhibitors, with second-order inhibition, rate constants (k(2)) between 56000 and 12-1000 M-1 min(-1). The compounds were shown to be pseudo-irreversible dual-mode, inhibitors: the interm ediate esterified enzyme resulting from nucleophilic ring opening was hydrolyzed and yielded amino alcohols as transition state-mimetic reversible inhibitors. The results of docking studies with the ring-closed aziridine forms of the inhibitors suggest binding modes mainly dominated by hydrophobic interactions with the S1, S1' S2, and S2' subsites of the protease, and docking studies with the processed amino alcohol forms predict additional hydrogen bonds of the new hydroxy group to the active site Asp residues. C. albicans growth assays showed the compounds to decrease SAP2-dependent growth while not affecting SAP2-independent growth.