960 resultados para Rice -- Biotechnology
Resumo:
Three indoor, sheeted bag-stack fumigations of paddy rice using aluminium phosphide were undertaken in Guangdong Province, southern China. We measured the effect of two types of sheeting (polyvinylchloride [PVC] or polyethylene [PE]) and two types of floor sealing (clips or fixing into a slot with a rubber pipe) on phosphine concentration and retention. The aim was to test the feasibility of retaining fumigant at a sufficient concentration for long enough to control known resistant insect pests. Each stack was pressure tested and phosphine concentrations measured daily during the fumigation. Cages of test insects in culture medium, including resistant and susceptible strains, were placed inside each stack and could be observed through the clear sheeting. Highest concentrations for the longest period were obtained in a PVC-covered stack that included a ground sheet and wall sheets sealed to the floor with rubber pipes. A similar PVC-covered stack sealed to the floor with clips instead of pipe did not retain gas as efficiently and required re-dosing. A PE-covered stack, with no ground sheet but also with wall sheets sealed to the floor with pipe, produced an acceptable fumigation. Susceptible Rhyzopertha dominica were controlled in 2 days and the most resistant strain in 15 days. Resistant Cryptolestes ferrugineus survived until day 21. The paddy was still free of insect infestation 7 months later when the bag-stack was opened to mill the rice. Pressure half-lives correlated with gas concentration and retention. Sorption appeared to be a major limiting factor, reducing potential fumigant dosage by about 50%. The trials demonstrated the feasibility of sealing bag-stacks to a standard high enough to control all known resistant strains.
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
Submergence stress regularly affects 15 million hectares or more of rainfed lowland rice areas in South and Southeast Asia. A major QTL on chromosome 9, Sub1, has provided the opportunity to apply marker assisted backcrossing (MAB) to develop submergence tolerant versions of rice cultivars that are widely grown in the region. In the present study, molecular markers that were tightly linked with Sub1, flanking Sub1, and unlinked to Sub1 were used to apply foreground, recombinant, and background selection, respectively, in backcrosses between a submergence-tolerant donor and the widely grown recurrent parent Swarna. By the BC2F2 generation a submergence tolerant plant was identified that possessed Swarna type simple sequence repeat (SSR) alleles on all fragments analyzed except the tip segment of rice chromosome 9 that possessed the Sub1 locus. A BC3F2 double recombinant plant was identified that was homozygous for all Swarna type alleles except for an approximately 2.3-3.4 Mb region surrounding the Sub1 locus. The results showed that the mega variety Swarna could be efficiently converted to a submergence tolerant variety in three backcross generations, involving a time of two to three years. Polymorphic markers for foreground and recombinant selection were identified for four other mega varieties to develop a wider range of submergence tolerant varieties to meet the needs of farmers in the flood-prone regions. This approach demonstrates the effective use of marker assisted selection for a major QTL in a molecular breeding program.
Resumo:
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers' incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870-1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum - 31 C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mill deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m(2)) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m(2)). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m(2)) between treatments; generally the grain yield (g/1.5 m(2)) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m(2)) than that on PRBs (mean 815 g/1.5 m(2)) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m(2)) in this system of PRBs. The growth and the grain yield (y in g/m(2)) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1. 1x -308; r(2) = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m(2)). Manual tillage did not affect growth and grain yield of rice (g/m(2); g/1.5 m(2)), either on PRB or on Flat land.
Resumo:
In this paper materials like rice husk ash, burnt clay and red mud are examined for their pozzolanic properties. Rice husk ash, obtained from various sources, is analysed by X-ray diffraction. Compressive strength properties of lime-pozzolana mortars with rice husk ash, burnt clay and red mud as pozzolana are studied. Influence of grinding of rice husk ash and intergrinding with lime are also investigated. Combination pozzolana with partial replacement of burnt clay and red mud by rice husk ash are examined for their pozzolanic properties. Long term strength behaviour of lime-pozzolana mortars is investigated to understand the durability of lime-pozzolana cements.
Resumo:
We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.
Resumo:
Rice flower, an Australian native species, has been cultivated in appreciable quantities as a cut flower crop since 1991. Although the plant can be highly productive, achieving consistently high commercial yields can prove elusive. Rice Flower production guidelines for growers is essential reading for producers who would aspire to grow and market rice flower well. For anyone with an interest in new crop development, this book provides a valuable insight into the intricacies of growing an indigenous species commercially.
Resumo:
Effect of lime:silica ratio on the kinetics of the reaction of silica with saturated lime has been investigated. Below C/S=0.65 the reaction does not proceed to completion and even in the presence of a large excess of silica only 90% lime is consumed. A parameter, lime reactivity index, has been defined to quantity the reactive silica present in rice husk ash. The product of the reaction between rice husk ash and saturated lime is a calcium hydrosilicate, C---S---H(I)**. The fibrilar structure and the hollow tubular morphology of the fibres of C---S---H, have been explained by a growth mechanism, where the driving force is osmotic pressure.
Resumo:
This book contains guidelines on market-driven production for export markets, with information on how the marketing chain operates and what risks are involved. Using rice flower as an example, the book gives growers strategies to enhance their market performance and improve the profitability of their enterprises. It outlines some practical suggestions for marketing rice flower in Japan, the United States, Taiwan and Hong Kong as well as in Australia, and also provides a draft standard for rice flower for export markets.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Development of new agricultural industries in northern Australia is seen as a way to provide food security in the face of reduced water availability in existing regions in the south. This report aims to identify some of the possible economic consequences of developing a rice industry in the Burdekin region, while there is a reduction of output in the Riverina. Annual rice production in the Riverina peaked at 1.7 M tonnes, but the long-term outlook, given climate change impacts on that region and government water buy-backs, is more likely to be less than 800,000 tonnes. Growers are highly efficient water users by international standards, but the ability to offset an anticipated reduction in water availability through further efficiency gains is limited. In recent years growers in the Riverina have diversified their farms to a greater extent and secondary production systems include beef, sheep and wheat. Production in north Queensland is in its infancy, but a potentially suitable farming system has been developed by including rice within the sugarcane system without competition and in fact contributing to the production of sugar by increasing yields and controlling weeds. The economic outcomes are estimated a large scale, dynamic, computable general equilibrium (CGE) model of the world economy (Tasman Global), scaled down to regional level. CGE models mimic the workings of the economy through a system of interdependent behavioural and accounting equations which are linked to an input-output database. When an economic shock or change is applied to a model, each of the markets adjusts according to the set of behavioural parameters which are underpinned by economic theory. In this study the model is driven by reducing production in the Riverina in accordance with relationships found between water availability and the production of rice and replacement by other crops and by increasing ride production in the Burdekin. Three scenarios were considered: • Scenario 1: Rice is grown using the fallow period between the last ratoon crop of sugarcane and the new planting. In this scenario there is no competition between rice and sugarcane • Scenario 2: Rice displaces sugarcane production • Scenario 3: Rice is grown on additional land and does not compete with sugarcane. Two time periods were used, 2030 and 2070, which are the conventional time points to consider climate change impacts. Under scenario 1, real economic output declines in the Riverina by $45 million in 2030 and by $139 million in 2070. This is only partially offset by the increased real economic output in the Burdekin of $35 million and $131 million respectively.
Resumo:
Rice husk ash (about 95% silica) with known physical and chemical characteristics has been reacted with lime and water. The setting process for a lime-excess and a lime-deficient mixture has been investigated. The product of the reaction has been shown to be a calcium silicate hydrate, C-S-H(I)+ by a combination of thermal analysis, XRD and electron microscopy. Formation of C-S-H(I) accounts for the strength of lime-rice husk ash cement.
Resumo:
Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.
Resumo:
The thermal decomposition characteristics of rice husk have been investigated by dynamic thermoanalytical techniques: DTA, TG, DTG and isothermal heating. The observed thermal behaviour is explained on the basis of a superposition of the decomposition of cellulose and lignin, which are the major organic constituents of rice husk. Morphological features of silica in husk as well as the ash are examined by scanning electron microscopy. Silica in the residual ash has been characterised by X-ray diffraction and infrared spectroscopy. Controlled thermal decomposition of rice husk has been shown to be a convenient method for the liberation of silica.