241 resultados para Ribulose-Bisphosphate Carboxylase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tagatose-1,6-biphosphate aldolase de Streptococcus pyogenes est une aldolase qui fait preuve d'un remarquable manque de spécificité vis à vis de ses substrats. En effet, elle catalyse le clivage réversible du tagatose-1,6-bisphosphate (TBP), mais également du fructose-1,6-bisphosphate (FBP), du sorbose-1,6-bisphosphate et du psicose-1,6-bisphosphate, quatre stéréoisomères, en dihydroxyacétone phosphate (DHAP) et en glycéraldéhyde-3-phosphate (G3P). Aldolase de classe I, qui donc catalyse sa réaction en formant un intermédiaire covalent obligatoire, ou base de Schiff, avec son susbtrat, la TBP aldolase de S. pyogenes partage 14 % d’identité avec l’enzyme modèle de cette famille, la FBP aldolase de muscle de mammifère. Bien que le mécanime catalytique de la FBP aldolase des mammifères ait été examiné en détails et qu’il soit approprié d’en tirer des renseignements quant à celui de la TBP aldolase, le manque singulier de stéréospécificité de cette dernière tant dans le sens du clivage que celui de la condensation n’est toujours pas éclairci. Afin de mettre à jour les caractéristiques du mécanisme enzymatique, une étude structurale de la TBP aldolase de S. pyogenes, un pathogène humain extrêmement versatile, a été entreprise. Elle a permis la résolution des structures de l’enzyme native et mutée, en complexe avec des subtrats et des inhibiteurs compétitifs, à des résolutions comprises entre 1.8 Å et 2.5 Å. Le trempage des cristaux de TBP aldolase native et mutante dans une solution saturante de FBP ou TBP a en outre permis de piéger un authentique intermédiaire covalent lié à la Lys205, la lysine catalytique. La determination des profils pH de la TBP aldolase native et mutée, entreprise afin d'évaluer l’influence du pH sur la réaction de clivage du FBP et TBP et ìdentifier le(s) résidu(s) impliqué(s), en conjonction avec les données structurales apportées par la cristallographie, ont permis d’identifier sans équivoque Glu163 comme résidu responsable du clivage. En effet, le mode de liaison sensiblement différent des ligands utilisés selon la stéréochimie en leur C3 et C4 permet à Glu163, équivalent à Glu187 dans la FBP aldolase de classe I, d’abstraire le proton sur l’hydroxyle du C4 et ainsi d’amorcer le clivage du lien C3-C4. L’étude du mécanimse inverse, celui de la condensation, grâce par exemple à la structure de l’enzyme native en complexe avec ses substrats à trois carbones le DHAP et le G3P, a en outre permis d’identifier un isomérisme du substrat G3P comme possible cause de la synthèse des isomères en C4 par cette enzyme. Ce résultat, ainsi que la decouverte d’un possible isomérisme cis-trans autour du lien C2-C3 de la base de Schiff formée avec le DHAP, identifié précedemment, permet de cerner presque complètement les particularités du mécanisme de cette enzyme et d’expliquer comment elle est capable de synthétiser les quatres stéréoisomères 3(S/R), 4(S/R). De plus, la résolution de ces structures a permis de mettre en évidence trois régions très mobiles de la protéine, ce qui pourrait être relié au rôle postulé de son isozyme chez S. pyogenes dans la régulation de l’expression génétique et de la virulence de la bactérie. Enfin, la résolution de la structure du mutant Lys229→Met de la FBP aldolase de muscle en complexe avec la forme cyclique du FBP, de même que des études cristallographiques sur le mutant équivalent Lys205→Met de la TBP aldolase de S. pyogenes et des expériences de calorimétrie ont permis d’identifier deux résidus particuliers, Ala31 et Asp33 chez la FBP aldolase, comme possible cause de la discrimination de cette enzyme contre les substrats 3(R) et 4(S), et ce par encombrement stérique des substrats cycliques. La cristallographie par rayons X et la cinétique enzymatique ont ainsi permis d'avancer dans l'élucidation du mécanisme et des propriétés structurales de cette enzyme aux caractéristiques particulières.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to determine the coordination of transcript and/or protein abundances of stromal enzymes during leaf senescence. First trifolioliate leaves of Phaseolus vulgaris L. plants were sampled beginning at the time of full leaf expansion; at this same time, half of the plants were switched to a nutrient solution lacking N. Total RNA and soluble protein abundances decreased after full leaf expansion whereas chlorophyll abundance remained constant; N stress enhanced the decline in these traits. Abundances of ribulose-1,5-bisposphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39), Rubisco activase and phosphoribulokinase (Ru5P kinase; EC 2.7.1.19) decreased after full leaf expansion in a coordinated manner for both treatments. In contrast, adenosine diphosphate glucose (ADPGlc) pyrophosphorylase (EC 2.7.7.27) abundance was relatively constant during natural senescence but did decline similar to the other enzymes under N stress. Northern analyses indicated that transcript abundances for all enzymes declined markedly on a fresh-weight basis just after full leaf expansion. This rapid decline was particularly strong for the Rubisco small subunit (rbcS) transcript. The decline was enhanced by N stress for rbcS and Rubisco activase (rca), but not for Ru5P kinase (prk) and ADPGlc pyrophosphorylase (agp). Transcripts of the Clp protease subunits clpC and clpP declined in abundance just after full leaf expansion, similar to the other mRNA species. When Northern blots were analyzed using equal RNA loads, rbcS transcripts still declined markedly just after full leaf expansion whereas rca and clpC transcripts increased over time. The results indicated that senescence was initiated near the time of full leaf expansion, was accelerated by N stress, and was characterized by large decline in transcripts of stromal enzymes. The decreased mRNA abundances were in general associated with steadily declining stromal protein abundances, with ADPGlc pyrophosphorylase being the notable exception. Transcript analyses for the Clp subunits supported a recent report (Shanklin et al., 1995, Plant Cell 7: 1713--1722) indicating that the Clp protease subunits were constitutive throughout development and suggested that ClpC and ClpP do not function as a senescence-specific proteolytic system in Phaseolus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first syntheses of the natural products myo-inositol 1,2,3-trisphosphate and (+/-)-myo-inositol 1,2-bisphosphate are described. The protected key intermediates 4,5,6-tri-O-benzoyl-myo-inositol and (+/-)-3,4,5,6-tetra-O-benzyl-myo-inositol were phosphorylated with dibenzyl N,N-di-isopropylphosphoramidite in the presence of 1H-tetrazole and subsequent oxidation of the phosphite. The crystal structures of the synthetic intermediates (+/-)-1-O-(tert-butyldiphenylsilyl)-2,3,O-cyclohexylidene-myo-inos itol and (+/-)-4,5,6-tri-O-benzoyl-1-O-(tert-butyldiphenylsilyl)-2,3-O-cycl ohexylidene- myo-inositol are reported. myo-Inositol 1,2,3-trisphosphate (+/-)-myo-inositol 1,2-bisphosphate, and all isomeric myo-inositol tetrakisphosphates were evaluated for their ability to alter HO. production in the iron-catalysed Haber-Weiss reaction. The results demonstrated that a 1,2,3-grouping of phosphates in myo-inositol was necessary for inhibition also that (+/-)-myo-inositol 1,2-bisphosphate potentiated HO. production. myo-Inositol 1,2,3-trisphosphate resembled myo-inositol hexakisphosphate (phytic acid) in its ability to act as a siderophore by promoting iron-uptake into Pseudomonas aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct phosphoenolpyruvate carboxylase (PEPC) isozymes occur in vascular plants and green algae: plant-type PEPC (PTPC) and bacterial-type PEPC (BTPC). PTPC polypeptides typically form a tightly regulated cytosolic Class-1 PEPC homotetramer. BTPCs, however, appear to be less widely expressed and to exist only as catalytic and regulatory subunits that physically interact with co-expressed PTPC subunits to form hetero-octameric Class-2 PEPC complexes that are highly desensitized to Class-1 PEPC allosteric effectors. Yeast two-hybrid studies indicated that castor plant BTPC (RcPPC4) interacts with all three Arabidopsis thaliana PTPC isozymes, and that it forms stronger interactions with AtPPC2 and AtPPC3, suggesting that specific PTPCs are preferred for Class-2 PEPC formation. In contrast, Arabidopsis BTPC (AtPPC4) appeared to interact very weakly with AtPPC2 and AtPPC3, suggesting that BTPCs from different species may have different physical properties, hypothesized to be due to sequence dissimilarities within their ~10 kDa intrinsically disordered region. Recent RNA-seq and microarray data were analyzed to obtain a better understanding of BTPC expression patterns in different tissues of various monocot and dicot species. High levels of BTPC transcripts, polypeptides and Class-2 PEPC complexes were originally discovered in developing castor seeds, but the analysis revealed a broad range of diverse tissues where abundant BTPC transcripts are also expressed, such as the developing fruits of cucumber, grape, and tomato. Marked BTPC expression correlated well with the presence of ~116 kDa immunoreactive BTPC polypeptides, as well as Class-2 PEPC complexes in the immature fruit of cucumbers and tomatoes. It is therefore hypothesized that in vascular plants BTPC and thus Class-2 PEPC complexes maintain anaplerotic PEP flux in tissues with elevated malate levels that would potently inhibit ‘housekeeping’ Class-1 PEPCs. Elevated levels of malate can be used by biosynthetically active sink tissues such as immature tomatoes and cucumbers for rapid cell expansion, drought or salt stressed roots for osmoregulation, and developing seeds and pollen as a precursor for storage lipid and protein biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master, Biology) -- Queen's University, 2016-09-29 20:09:46.997

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy. Method We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (γ-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining γ-T3 and PSP in the treatment of prostate cancer. Result We showed that in the presence of PSP, γ-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward γ-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and γ-T3 treaments significantly reduced the growth of prostate tumor in vivo. Conclusion Our results indicate that PSP and γ-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 100,000 x g supernatant fraction prepared from developing groundnut seeds (30-35 days after flowering) catalyzed the synthesis of fatty acids from [l-14C]acetate at a rate of 120nmoles of acetate incorporated per hr per gram fresh weight of tissue. 90% of this incorporated label was associated with fatty acids. The major fatty acids formed were stearic- (77%) and palmitic acids (14%) with 4% of oleic acid. The fatty acid synthetase activity was stable when stored at 0-4 degrees C for at least fifteen days. It is concluded from these results that acetyl-coA carboxylase and all the enzymes of fatty acid synthetase from developing groundnut seeds are soluble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to a published report [Wali et al. Arch Microbiol 118:49–53 (1978)], an organic acid is not essential for the growth of thermophilic fungi. The thermophilic fungus, Thermomyces lanuginosus, grows satisfactorily in a synthetic medium containing glucose as carbon source if the pH of the medium is controlled. The control of pH is essential for the concentration of carbon dioxide in the growth medium and the activity of anaplerotic enzyme, pyruvate carboxylase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. Methodology/Principal Findings: BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the similar to 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weigt profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved `GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K-m for BCCP was similar to 5.2 mu M and similar to 420 nM for biotin. MtBPL has low affinity (K-b = 1.06 x 10(-6) M) for biotin relative to EcBirA but their K-m are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. Conclusions/Significance: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose-6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate. The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 microM and in the presence of 0.5 mM ATP it increased to 27 microM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 microM. AMP, 10 microM, decreased the KD to 5 microM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 microM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 microM, and it increased to 15 microM in the presence of fructose 2,6-bisphosphate. The addition of 50 microM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 microM. AMP increased the KD to 5.9 microM whereas 0.3 mM citrate decreased the KD for ATP to about 2 microM.(ABSTRACT TRUNCATED AT 400 WORDS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coil AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K-m values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the iochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coil AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis. (C) 2010 Elsevier B.V. All rights reserved.