968 resultados para Ribonucleoprotein-c Proteins
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Background-C- reactive protein (CRP) levels have been shown to predict a number of cardiovascular outcomes. CRP levels have also been found to be elevated in patients with abdominal aortic aneurysms (AAAs). The aim of this study was to assess the relation between CRP levels and rates of expansion of small AAAs. Methods and Results-A cohort of men with small aneurysms was identified in a trial of screening with ultrasound scanning. After initial screening, men were rescanned at 6- to 12-month intervals. CRP levels were measured at the first follow-up visit. Rates of expansion and risk factors for expansion were assessed with the use of data from 545 men who attended for at least 1 scan after CRP levels were measured. These men were followed for a median of 48 (range, 5 to 69) months. The mean annual rate of expansion was 1.6 mm. The median CRP level was 2.6 mg/L in men with the smaller AAAs (30 to 39 mm, n=433) compared with 3.5 mg/L in men with larger AAAs (40 to 54 mm, n=112) (P=0.007). The multivariate age-adjusted logistic model confirmed initial aortic diameter to be the only factor associated with rapid expansion with an odds ratio of 7.2 (95% CI, 4.3,12.2) for an initial diameter of 40 to 54 mm relative to one of 30 to 39 mm. Conclusions-Most small aneurysms expand slowly. CRP levels are elevated in larger aneurysms but do not appear to be associated with rapid expansion. The most useful predictor of aneurysmal expansion in men is aortic diameter.
Resumo:
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between yield and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially screen, in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the current work, we studied the effect of the nonionic detergent dodecyloctaethyleneglycol, C(12)E(8), on the structure and oligomeric form of the Na,K-ATPase membrane enzyme (sodium-potassium pump) in aqueous suspension, by means of small-angle X-ray scattering (SAXS). Samples composed of 2 mg/mL of Na,K-ATPase, extracted from rabbit kidney medulla, in the presence of a small amount of C(12)E(8) (0.005 mg/mL) and in larger concentrations ranging from 2.7 to 27 mg/mL did not present catalytic activity. Under this condition, an oligomerization of the alpha subunits is expected. SAXS data were analyzed by means of a global fitting procedure supposing that the scattering is due to two independent contributions: one coming from the enzyme and the other one from C(12)E(8) micelles. In the small detergent content (0.005 mg/mL), the SAXS results evidenced that Na,K-ATPase is associated into aggregates larger than (alpha beta)(2) form. When 2.7 mg/mL of C(12)E(8) is added, the data analysis revealed the presence of alpha(4) aggregates in the solution and some free micelles. Increasing the detergent amount up to 27 mg/mL does not disturb the alpha(4) aggregate: just more micelles of the same size and shape are proportionally formed in solution. We believe that our results shed light on a better understanding of how nonionic detergents induce subunit dissociation and reassembling to minimize the exposure of hydrophobic residues to the aqueous solvent.
Resumo:
Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine`s formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 run, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Resumo:
Aminoacyl-transfer RNA (tRNA) synthetases (aaRS) are key players in translation and act early in protein synthesis by mediating the attachment of amino acids to their cognate tRNA molecules. In plants, protein synthesis may occur in three subcellular compartments (cytosol, mitochondria, and chloroplasts), which requires multiple versions of the protein to be correctly delivered to its proper destination. The organellar aaRS are nuclear encoded and equipped with targeting information at the N-terminal sequence, which enables them to be specifically translocated to their final location. Most of the aaRS families present organellar proteins that are dual targeted to mitochondria and chloroplasts. Here, we examine the dual targeting behavior of aaRS from an evolutionary perspective. Our results show that Arabidopsis thaliana aaRS sequences are a result of a horizontal gene transfer event from bacteria. However, there is no evident bias indicating one single ancestor (Cyanobacteria or Proteobacteria). The dual-targeted aaRS phylogenetic relationship was characterized into two different categories (paralogs and homologs) depending on the state recovered for both dual-targeted and cytosolic proteins. Taken together, our results suggest that the dual-targeted condition is a gain-of-function derived from gene duplication. Selection may have maintained the original function in at least one of the copies as the additional copies diverged.
Resumo:
PREDBALB/c is a computational system that predicts peptides binding to the major histocompatibility complex-2 (H2(d)) of the BALB/c mouse, an important laboratory model organism. The predictions include the complete set of H2(d) class I ( H2-K-d, H2-L-d and H2-D-d) and class II (I-E-d and I-A(d)) molecules. The prediction system utilizes quantitative matrices, which were rigorously validated using experimentally determined binders and non-binders and also by in vivo studies using viral proteins. The prediction performance of PREDBALB/c is of very high accuracy. To our knowledge, this is the first online server for the prediction of peptides binding to a complete set of major histocompatibility complex molecules in a model organism (H2(d) haplotype). PREDBALB/c is available at http://antigen.i2r.a-star.edu.sg/predBalbc/.
Resumo:
Aims: This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. Methods and results: Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n = 15), actinic cheilitis (AC) (n = 30), and lip squamous cell carcinoma (LSCC) (n = 27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. Conclusions: Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.
Resumo:
Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
Resumo:
The SH3 domains of src and other nonreceptor tyrosine kinases have been shown to associate with the motif PXXP, where P and X stand for proline and an unspecified amino acid, but a motif that binds to the SH3 domain of myosin has thus far not been characterized. We previously showed that the SH3 domain of Acanthamoeba myosin-IC interacts with the protein Acan125. We now report that the Acan125 protein sequence contains two tandem consensus PXXP motifs near the C terminus. To test for binding, we expressed a polypeptide, AD3p, which includes 344 residues of native C-terminal sequence and a mutant polypeptide, AD3 Delta 977-994p, which lacks the sequence RPKPVPPPRGAKPAPPPR containing both PXXP motifs. The SH3 domain of Acanthamoeba myosin-IC bound AD3p and not AD3 Delta 977-994p, showing that the PXXP motifs are required for SH3 binding. The sequence of Acan125 is related overall to a protein of unknown function coded by Caenorhabditis elegans gene K07G5.1. The K07G5.1 gene product contains a proline-rich segment similar to the SH3 binding motif found in Acan125. The aligned sequences show considerable conservation of leucines and other hydrophobic residues, including the spacing of these residues, which matches a motif for leucine-rich repeats (LRRs). LRR domains have been demonstrated to be sites for ligand binding. Having an LRR domain and an SH3-binding domain, Acan125 and the C. elegans homologue define a novel family of bifunctional binding proteins.
Resumo:
Protein purification that combines the use of molecular mass exclusion membranes with electrophoresis is particularly powerful as it uses properties inherent to both techniques. The use of membranes allows efficient processing and is easily scaled up, while electrophoresis permits high resolution separation under mild conditions. The Gradiflow apparatus combines these two technologies as it uses polyacrylamide membranes to influence electrokinetic separations. The reflux electrophoresis process consists of a series of cycles incorporating a forward phase and a reverse phase. The forward phase involves collection of a target protein that passes through a separation membrane before trailing proteins in the same solution. The forward phase is repeated following clearance of the membrane in the reverse phase by reversing the current. We have devised a strategy to establish optimal reflux separation parameters, where membranes are chosen for a particular operating range and protein transfer is monitored at different pH values. In addition, forward and reverse phase times are determined during this process. Two examples of the reflux method are described. In the first case, we describe the purification strategy for proteins from a complex mixture which contains proteins of higher electrophoretic mobility than the target protein. This is a two-step procedure, where first proteins of higher mobility than the target protein are removed from the solution by a series of reflux cycles, so that the target protein remains as the leading fraction. In the second step the target protein is collected, as it has become the leading fraction of the remaining proteins. In the second example we report the development of a reflux strategy which allowed a rapid one-step preparative purification of a recombinant protein, expressed in Dictyostelium discoideum. These strategies demonstrate that the Gradiflow is amenable to a wide range of applications, as the protein of interest is not necessarily required to be the leading fraction in solution. (C) 1997 Elsevier Science B.V.
Resumo:
Background Diet seems to represent, directly or indirectly, 35% of all cancer reports. In this study, the influence of dietary protein on the growth of melanoma B16F10 was evaluated through analyses of cell cycle phases and proliferative capacity. Methods Flow cytometry and argyrophilic nucleolar organizer regions (AgNORs) technique were applied in mice bearing B16F10 melanoma cells fed on different dietary proteins. All data were submitted to statistical analyses. Results The G0/G1 phase increased for the animal groups fed bovine collagen hydrolysate (BCH) or BCH-P1 + whey protein isolate (WPI), compared with mice receiving only WPI, for all dietary groups treated and nontreated with paclitaxel. Mice that received BCH + WPI treated with paclitaxel showed the highest percentage of apoptosis compared with WPI group. AgNORs, total nucleolar organizer regions (NORs)/cells and dot number/cell for all dietary protein groups nontreated with paclitaxel were higher than for the WPI. The only two dietary protein groups treated with paclitaxel that presented higher total NORs and dot number/cell than the WPI group were BCH + WPI and BCH-P1 + WPI. Conclusions A significantly lower proliferative capacity and larger number of cells in the G0/G1 phase were observed for the dietary protein groups combining the two collagen hydrolysates, BCH or BCH-P1 with WPI, treated with paclitaxel. Castro GA, Maria DA, Rodrigues CJ, Sgarbieri VC. Analysis of cell cycle phases and proliferative capacity in mice bearing melanoma maintained on different dietary proteins.