960 resultados para Rhizome sugars
Resumo:
Peer reviewed
Resumo:
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.
Resumo:
After harvest, plants remain living organisms with the capacity to carry out metabolic processes. Thus, from the moment they are detached from the source of nutrients, they become entirely dependent on their own organic reserves [1]. Postharvest changes cannot be stopped, but they can be slowed within certain limits. Therefore, this study was conducted to evaluate the effects induced by storage in the profiles of sugars, organic acids and tocopherols of two leafy vegetables. Wild samples of watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. & Reut.), from the Northeastern region of Portugal, were analyzed after harvest (control) and after storage in sterilized packages (using the passive modification mode) at 4ºC for 7 or 12 days, respectively. Analyses were performed by high-performance liquid chromatography (HPLC) using different detectors, i.e., a refraction index detector (RID) for free sugars, a photodiode array detector (PDA) for organic acids, and a fluorescence (FP) detector for tocopherols. The storage time decreased the levels of fructose, glucose and total sugars in both leafy vegetables and increased the total organic acids content. The decrease of these sugars can be related to its use by the plant to produce the required energy. Ascorbic acid was detected in buckler sorrel and decreased with storage; while the amount of malic acid increased in both species. Curiously, all the tocopherol isoforms increased in watercress, while buckler sorrel just present higher values of γ- and δ- tocopherols. In fact, the de novo synthesis of these bioactives compounds can be a plant strategy to fight against the reactive species that are produced during storage. The knowledge of the behavior of these compounds during storage that was achieved with this study [2] may contribute to the development of more effective preservation strategies for leafy vegetables.
Resumo:
Purpose: To investigate the anti-arthritic activity of the water extract of Rhizoma Arisaematis (WERA) using a collagen II -induced arthritis (CIA) rat model. Methods: CIA was induced in male Sprague-Dawley rats by intradermal injection of bovine collagen II in Complete Freund’s Adjuvant. The rats were treated with daily oral doses of WERA (100, 200, and 400 mg/kg) for 21 consecutive days. Methotrexate (MTX, 3 mg/kg), used as a positive control, was administered orally 2 times/week for 3 weeks. The severity of arthritis was evaluated using indices of paw swelling, arthritic score, body weight, thymus index, and spleen index. In addition, the serum levels of IL-1β, IL-6, IL-10, and TNF-α were measured. Results: All doses of WERA significantly inhibited paw edema (p < 0.01), decreased arthritis scores (p < 0.01) and spleen index (p < 0.05), and alleviated the weight loss associated with CIA in rats. Furthermore, TNF-α, IL-1β, and IL-6 serum levels were significantly decreased (p < 0.05) by all doses of WERA. By contrast, IL-10 serum levels were markedly increased (p < 0.05). Conclusion: WERA exerts therapeutic effects in CIA in rats by decreasing the serum levels of TNF-α, IL-1β, IL-6 and IL-10, suggesting WERA may be an effective candidate drug for treating human rheumatoid arthritis.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.
Resumo:
Biomass has been long exploited as an anthropogenic energy source; however, the 21st century challenges of energy security and climate change are driving resurgence in its utilization both as a renewable alternative to fossil fuels and as a sustainable carbon feedstock for chemicals production. Deconstruction of cellulose and hemicellulose carbohydrate polymers into their constituent C5 and C6 sugars, and subsequent heterogeneously catalyzed transformations, offer the promise of unlocking diverse oxygenates such as furfural, 5-hydroxymethylfurfural, xylitol, sorbitol, mannitol, and gluconic acid as biorefinery platform chemicals. Here, we review recent advances in the design and development of catalysts and processes for C5-C6 sugar reforming into chemical intermediates and products, and highlight the challenges of aqueous phase operation and catalyst evaluation, in addition to process considerations such as solvent and reactor selection.
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Kohleria eriantha (Benth.) Hanst is a plant belonging to the family Gesneriaceae, with an underground organ, which is associated with vegetative reproduction. This organ is a rhizome, whose stem bears buds covered with modified leaves that store up starch. In small sections of this rhizome, containing six buds (1.5 to 2.0cm long), only one bud sprouted. The sprouted bud could be differentiated into two morphological pattern: aerial part or rhizome. Sprouting of the rhizome pattern occurred in sections kept on substrate with low water content (1mL of water), or lacking water, whereas sprouting of the aerial part pattern occurred in sections on substrate with high water content (12mL of water). Temperature at 20ºC also stimulated sprouting of the rhizome pattern, regardless of the water volume in the substrate. Sprouting of the rhizome pattern occurred still in sections on substrate to which polyethylene glycol 6000 (PEG) solution was added at the concentrations of 161.2, 235.2 and 340.0g/L, resulting in potentials of -3, -6 and -12 MPa, respectively. Sections kept on substrate with low water content (1 ml of water) showed a reduction in the dry matter content and high osmotic concentration in comparison with those on substrate with high water content. The results obtained revealed that forming of the rhizome pattern was influenced by water content and temperature. It is suggested that sprouting of the rhizome pattern was induced by the low water potential in the sections, when kept on substrate with low water content. Moreover, it was observed that the rhizome buds of Kohleria eriantha showed a high degree of plasticity.
Inibidor da ação do etileno na conservação pós-colheita de Chrysanthemum morifolium Ramat cv. Dragon
Resumo:
The durability and postharvest quality of cut flowers are fundamental attributes in value along the production chain and in consumer satisfaction. The objective of this study was to evaluate the effect of chemical inhibitors of ethylene action on maintaining the postharvest quality of chrysanthemum stems (Chrysanthemum morifolium Ramat cv. Dragon). The experiment tested maintenance solutions with silver thiosulfate (STS) under five levels (distilled water, a 0.2 mM STS, the STS 0.2 mM + sucrose at 50 g L-1, STS at 0.4 mM; STS at 0.4 mM + sucrose at 50 g L-1), and date of sampling, for three levels (0, 3, 6 days). Three replications with two flower stems in each treatment were used in the experiment. Physical assessments were made: color, fresh mass and relative water content; chemical evaluations: reducing sugars and pigments, and qualitative assessments: turgidity, flower color, and number of buds, open flowers and partially open flowers. Treatment with 0.2 mM STS resulted in better maintenance of fresh mass of stems. The concentration of pigments and reducing sugar was higher in those treatments in which sucrose was associated. The color and relative water content were favored in treatments STS 0.2 mM and 0.4 mM. The concentration of 0.2 mM STS obtained the best results, prolonging the vase life the stems. The quality of these stems was higher, with the best assessments of water content, color and turgidity.
Resumo:
The development and use of techniques that extend the life vase of the flowers, maintaining the quality of the product, is essential for reducing postharvest losses. The objective of this work was to evaluate different solutions for maintenance, associated or not to sucrose, in maintaining the postharvest quality of chrysanthemum stems. The treatments used distilled water, 8-HQC to 100 mg L-1, 8-HQC to 100 mg L-1 + sucrose 50 g L-1, 8-HQC to 200 mg L-1, 8-HQC to 200 mg L-1 + sucrose 50 g L-1. Physical assessments were made: color, fresh mass and relative water content; chemical evaluations: reducing sugars and pigments, and qualitative assessments: turgidity, color of the flowers, and number of buttons, open flowers and partially open flowers. The combination of 8-HQC 200 mg L-1 + sucrose 50 g L-1 was the best performance that made for maintaining the quality of flower stems, favoring the opening of buttons and turgidity of petals. Sucrose contributed to better maintenance of the reserve substances in the shaft, which had increased the flower vase life.
Resumo:
Foram analisados os rizomas de Bulbostylis paradoxa Ness, Cyperus giganteus Vahl, C. odoratus L., Fuirena umbellata Rottb. e Hypolytrum schraderianum Ness. O corpo primário é resultante da atividade dos meristemas apicais e do meristema de espessamento primário (MEP). Também ocorre crescimento em espessura, que é decorrente da atividade do meristema de espessamento secundário (MES). O procâmbio e o MEP originam feixes colaterais em H. schraderianum e feixes anfivasais nas demais espécies. Entretanto, todos os feixes que têm protofloema e protoxilema são de origem procambial. O MES produz floema e xilema constituindo um tecido vascular único. Elementos de vaso foram encontrados na maioria dos caules em estrutura primária e secundária, com exceção de H. schraderianum que, na estrutura secundária, contém apenas traqueídes, informação que respalda a ocorrência de crescimento secundário nas Cyperaceae. Os elementos de vaso apresentam grande variação morfológica; em estrutura primária, geralmente são mais alongados, com apêndices. Os elementos de vaso do crescimento secundário são relativamente mais curtos, apresentam apêndices e ramificações.
Resumo:
Considering the importance of water content for the conservation and storage of seeds, and the involvement of soluble carbohydrates and lipids for embryo development, a comparative study was carried out among the seeds of Inga vera (ingá), Eugenia uniflora (pitanga), both classified as recalcitrant, and Caesalpinia echinata (brazilwood) and Erythrina speciosa (mulungu), considered as orthodox seeds. Low concentrations of cyclitols (0.3-0.5%), raffinose family oligosaccharides (ca. 0.05%) and unsaturated fatty acids (0-19%) were found in the seeds of ingá and pitanga, while larger amounts of cyclitols (2-3%) and raffinose (4.6-13%) were found in brazilwood and mulungu, respectively. These results, in addition to higher proportions of unsaturated fatty acids (53-71%) in orthodox seeds, suggested that sugars and lipids played important role in water movement, protecting the embryo cell membranes against injuries during dehydration.