800 resultados para Results Based Management
Resumo:
The distribution, systematics and ecology of Bactrocera tryoni, the Queensland fruit fly are reviewed. Bactrocera tryoni is a member of the B. tryoni complex of species, which currently includes four named species, viz. B. tryoni s.s., B. neohumeralis, B. melas and B. aquilonis. The species status of B. melas and B. aquilonis are unclear (they may be junior synonyms of B. tryoni) and their validity, or otherwise, needs to be confirmed as a matter of urgency. While Queensland fruit fly is regarded as a tropical species, it cannot be assumed that its distribution will spread further south under climate change scenarios. Increasing aridity and hot dry summers, as well as more complex, indirect interactions resulting from elevated CO2, make predicting the future distribution and abundance of B. tryoni difficult. The ecology of B. tryoni is reviewed with respect to current control approaches (with the exception of Sterile Insect Technique which is covered in a companion paper). We conclude that there are major gaps in the knowledge required to implement most non-insecticide based management approaches. Priority areas for future research include host plant interactions, protein and cue-lure foraging and use, spatial dynamics, development of new monitoring tools, investigating the use of natural enemies and better integration of fruit flies into general horticultural IPM systems.
Resumo:
Web service technology is increasingly being used to build various e-Applications, in domains such as e-Business and e-Science. Characteristic benefits of web service technology are its inter-operability, decoupling and just-in-time integration. Using web service technology, an e-Application can be implemented by web service composition — by composing existing individual web services in accordance with the business process of the application. This means the application is provided to customers in the form of a value-added composite web service. An important and challenging issue of web service composition, is how to meet Quality-of-Service (QoS) requirements. This includes customer focused elements such as response time, price, throughput and reliability as well as how to best provide QoS results for the composites. This in turn best fulfils customers’ expectations and achieves their satisfaction. Fulfilling these QoS requirements or addressing the QoS-aware web service composition problem is the focus of this project. From a computational point of view, QoS-aware web service composition can be transformed into diverse optimisation problems. These problems are characterised as complex, large-scale, highly constrained and multi-objective problems. We therefore use genetic algorithms (GAs) to address QoS-based service composition problems. More precisely, this study addresses three important subproblems of QoS-aware web service composition; QoS-based web service selection for a composite web service accommodating constraints on inter-service dependence and conflict, QoS-based resource allocation and scheduling for multiple composite services on hybrid clouds, and performance-driven composite service partitioning for decentralised execution. Based on operations research theory, we model the three problems as a constrained optimisation problem, a resource allocation and scheduling problem, and a graph partitioning problem, respectively. Then, we present novel GAs to address these problems. We also conduct experiments to evaluate the performance of the new GAs. Finally, verification experiments are performed to show the correctness of the GAs. The major outcomes from the first problem are three novel GAs: a penaltybased GA, a min-conflict hill-climbing repairing GA, and a hybrid GA. These GAs adopt different constraint handling strategies to handle constraints on interservice dependence and conflict. This is an important factor that has been largely ignored by existing algorithms that might lead to the generation of infeasible composite services. Experimental results demonstrate the effectiveness of our GAs for handling the QoS-based web service selection problem with constraints on inter-service dependence and conflict, as well as their better scalability than the existing integer programming-based method for large scale web service selection problems. The major outcomes from the second problem has resulted in two GAs; a random-key GA and a cooperative coevolutionary GA (CCGA). Experiments demonstrate the good scalability of the two algorithms. In particular, the CCGA scales well as the number of composite services involved in a problem increases, while no other algorithms demonstrate this ability. The findings from the third problem result in a novel GA for composite service partitioning for decentralised execution. Compared with existing heuristic algorithms, the new GA is more suitable for a large-scale composite web service program partitioning problems. In addition, the GA outperforms existing heuristic algorithms, generating a better deployment topology for a composite web service for decentralised execution. These effective and scalable GAs can be integrated into QoS-based management tools to facilitate the delivery of feasible, reliable and high quality composite web services.
Resumo:
Airports worldwide represent key forms of critical infrastructure in addition to serving as nodes in the international aviation network. While the continued operation of airports is critical to the functioning of reliable air passenger and freight transportation, these infrastructure systems face a number of sources of disturbance that threaten their operational viability. Recent examples of high magnitude events include the eruption of Iceland’s Eyjafjallajokull volcano eruption (Folattau and Schofield 2010), the failure of multiple systems at the opening of Heathrow’s Terminal 5 (Brady and Davies 2010) and the Glasgow airport 2007 terrorist attack (Crichton 2008). While these newsworthy events do occur, a multitude of lower-level more common disturbances also have the potential to cause significant discontinuity to airport operations. Regional airports face a unique set of challenges, particularly in a nation like Australia where they serve to link otherwise remote and isolated communities to metropolitan hubs (Wheeler 2005), often without the resources and political attention received by larger capital city airports. This paper discusses conceptual relationships between Business Continuity Management (BCM) and High Reliability Theory, and proposes BCM as an appropriate risk-based management process to ensure continued airport operation in the face of uncertainty. In addition, it argues that that correctly implemented BCM can lead to highly reliable organisations. This is framed within the broader context of critical infrastructures and the need for adequate crisis management approaches suited to their unique requirements (Boin and McConnell 2007).
Resumo:
In their recent review of prior studies examining firm performance, Klapper and Parker (2010, p.7) conclude that “women entrepreneurs tend to underperform relative to their male counterparts.” However, Robb and Watson (2011) argue that much of this prior research is based on inappropriate performance measures and/or does not adequately control (due to data limitations) for important demographic differences. Given the conflicting findings reported in the literature, the aim of this study is to replicate the study by Robb and Watson (2011) to see if their findings can be generalized to another geographical location. Our results, based on an analysis of 209 female-owned and 263 male-owned young Australian firms, confirm those of Robb and Watson (2011). We believe that this outcome should help dispel the female underperformance myth; which if left unchallenged could result in inappropriate policy decisions and, more importantly, could discourage women from establishing new ventures.
Resumo:
Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation, RC attempts at linking entity pairs between two entity lists under the relation. To accomplish the RC goals, we propose to formulate search queries for each query entity α based on some auxiliary information, so that to detect its target entity β from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC.
Resumo:
The macroscopic fundamental diagram (MFD) traffic modelling method has been proved for large urban roads and freeway networks, but hysteresis and scatter have been found in both such networks. This paper investigates how incident variables affect the shape and scatter of the MFD using both simulated data and real data collected from the M3 Pacific motorway in Brisbane, Australia. Three key components of incidents are investigated based on the simulated data (i.e. incident location, incident duration and traffic demand). The results based on simulated data indicate that the diagram shape is a property not only of the network itself but also of the incident variables. Diagrams for three types of real incidents (crash, hazard and vehicle breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs both upstream and downstream of the incident location, but for opposite hysteresis loops. The gradient of the upstream diagram is greater than that downstream on the incident site, when traffic demand is for an off-peak period.
Resumo:
There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
Employees’ safety climate perceptions dictate their safety behavior because individuals act based on their perceptions of reality. Extensive empirical research in applied psychology has confirmed this relationship. However, rare efforts have been made to investigate the factors contributing to a favorable safety climate in construction research. As an initial effort to address the knowledge gap, this paper examines factors contributing to a psychological safety climate, an operationalization of a safety climate at the individual level, and, hence, the basic element of a safety climate at higher levels. A multiperspective framework of contributors to a psychological safety climate is estimated by a structural equation modeling technique using individual questionnaire responses from a random sample of construction project personnel. The results inform management of three routes to psychological safety climate: a client’s proactive involvement in safety management, a workforce-friendly workplace created by the project team, and transformational supervisors’ communication about safety matters with the workforce. This paper contributes to the field of construction engineering and management by highlighting a broader contextual influence in a systematic formation of psychological safety climate perceptions.
Resumo:
Background Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed. Methods A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function. Results Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference. Conclusions The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.