821 resultados para Resolução de problemas
Resumo:
Jorge Nuno Silva
Resumo:
A integração da História da Matemática no ensino da Matemática é defendida há muito tempo e em vários países. Embora a discussão sobre os “prós” e “contras” dessa integração seja de longa data, a tendência nos últimos anos tem sido a procura de uma base teórica e de uma metodologia que alicercem essa integração. Uma das formas apontadas na literatura para a integrar na sala de aula é através de problemas históricos, tendo sido esta também a forma adoptada neste estudo. Esta investigação tem como objectivo caracterizar a aprendizagem da Matemática quando mediada por problemas históricos. Para tal, foram formuladas as seguintes questões: (1) Que aspectos do ambiente de aprendizagem ajudam na aprendizagem da Matemática quando são usados problemas históricos? (2) De que forma os problemas históricos actuam como artefactos mediadores da aprendizagem da Matemática? (3) Como é que o uso dos problemas históricos na sala de aula contribui para promover a aprendizagem da Matemática? (4) Quais as contradições ocorridas quando são utilizados problemas históricos nas aulas de Matemática? Nesta investigação, de natureza qualitativa, foi adoptado o paradigma interpretativo e os dados foram recolhidos através de uma observação participante completa. Atendendo aos objectivos do estudo, e tomando o sistema de actividade da sala de aula como a unidade de análise, foram recolhidos dados, em algumas aulas de Matemática e de Estudo Acompanhado de Matemática de uma turma do 8º ano, entre Setembro de 2006 e Maio de 2007. Os dados foram analisados à luz da Teoria da Actividade, na perspectiva de Engeström (1987), tendo sido seguido o esquema metodológico proposto por Mwanza (2002). Os resultados deste estudo mostram que os problemas históricos, quando usados como um artefacto mediador, num ambiente de aprendizagem devidamente apoiado pela orientação e questionamento da professora, ajudam os alunos a compreender os conteúdos leccionados, além de desempenharem um importante papel de motivação.
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)