955 resultados para Residual forestry biomass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO(2-e)) stored within a certain forest area. Potential CO(2-e) above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO(2-e))(-1) and US $7.19 (MgCO(2-e))(-1) for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C(-1) and US$35.1 Mg C(-1) and yearly payments of US$4.4 m(-3) and US$8.2 m(-3) due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value. an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is not applicable to low commercial value forest plantations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing volume of urban sewage nowadays generates considerable amount of sludge to be disposed of. One environmentally adequate destination could be the application of treated and stabilized sludge (biosolids) to forest plantations as fertilizer and soil conditioner. The purpose of this study was to analyze the feasibility of applying sewage sludge, evaluating its effects on native tree seedlings. The species evaluated were aroeira-pimenteira (Schinus terebinthifolia Raddi), cabreuva-vermelha (Myroxy-Ion peruiferum L. f.), pau-de-viola (Cytarexyllum myrianthum Cham), unha-de-vaca (Bauhinia forficata Link), which are usually planted in forest restoration. Seedlings were cultivated in pots, containing a volume of 4 dm(3) of soil, within a greenhouse. The study was developed in the proximity of Campinas, SP, Brazil, and installed in November, 2003. The design was entirely randomized including seven treatments: control; mineral fertilization; and different doses of sewage sludge (biosolids) complemented with potassium, due to the low concentration of this element in the sludge produced by the wastewater treatment plant of Barueri (Metropolitan region of Sao Paulo city). The results showed that the application of different dosages of biosolids promoted different responses in stem height and biomass production. The treatment with 20 g/dm(3) of dry sewage sludge promoted both the highest growth and the highest seedling biomass production, compared to the control treatment. All native tree species treated with the highest dosage of sewage sludge showed a growth similar to that of mineral fertilization. The seedlings of aroeira-pimenteira, pau-de-viola, and unha-de-vaca, all typical species of the initial succession in natural forest ecosystems, grew and produced more biomass than cabreuva-vermelha, a typical species of the final forest succession.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three-and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined similar to 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 mu mol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by similar to 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 mu mol C mol N(-1) s(-1) at 20 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the performance and to estimate costs of two round baling systems for harvesting understory biomass. One system was a cutter-shredderbaler prototype (Bio-baler). The other system required two successive operations. The first operation was cutting and shredding with a Supertrak tractor equipped with a Fecon mulcher head. The second operation was baling with a Claas baler. The machines were evaluated in three different pine stands on the Osceola National Forest in Florida, United States. Data collection included time study, fuel consumption and bale measurements. Material was collected from a sample of bales for heat and moisture content determination. On the most representative site (Site 2), the Bio-baler recovered 8.05 green t ha(-1) while the mulcher and the Claas baler recovered 9.75 green t ha(-1) (43 and 52 percent of original understory biomass, respectively). Productivity was 0.30 ha h(-1) for the Bio-baler and 0.51 ha h(-1) for the Claas baler. Density of the bales was 321 green kg m(-3) for the Bio-baler and 373 green kg m(-3) for the Claas baler. Average net heat content was 6263 MJ bale(-1) for the Bio-baler and 6695 MJ bale(-1) for the Claas baler with biomass containing 38 percent of moisture content on a wet basis. cost per unit area was less with the Bio-baler (US$320.91 ha(-1)) than with the mulcher-baler system (US$336.62-US$596.77 ha(-1)). Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m(3)/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research conducted on biomass for Ulcos (""Ultra-Low CO(2) Steelmaking"" European Integrated Project) has progressively focused on charcoal supply from tropical eucalyptus plantations. The sustainability of such plantations is being investigated from the viewpoint of their carbon, water and nutrient budgets: they must all be neutral or positive. Field research is producing results at the tree or stand level in several sites of Congo and Brazil, while a spatial model is developed to identify the conditions of biomass neutrality at the scale of the forest ecosystem. The productivity of biomass has been analyzed through the description of practices along the various supply-schemes that competitively feed the steel industry in Brazil and identification of bottlenecks for further expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work demonstrated that a mixture of NH(4)Cl and KNO(3) as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH(4))(2)SO(4) plus NaNO(3), varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO(2) addition or not. A. platensis was cultivated in mini-tanks at 30 degrees C, 156 mu mol photons m(-2) s(-1), and starting cell concentration of 400 mg L(-1), on a modified Schlosser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L(-1), cell productivity of 179 mg L(-1) d(-1) and specific growth rate of 0.77 d(-1)) and satisfactory protein and lipid contents (around 30% each). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.