120 resultados para Resampling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades the public sector comes under pressure in order to improve its performance. The use of Information Technology (IT) has been a tool increasingly used in reaching that goal. Thus, it has become an important issue in public organizations, particularly in institutions of higher education, determine which factors influence the acceptance and use of technology, impacting on the success of its implementation and the desired organizational results. The Technology Acceptance Model - TAM was used as the basis for this study and is based on the constructs perceived usefulness and perceived ease of use. However, when it comes to integrated management systems due to the complexity of its implementation,organizational factors were added to thus seek further explanation of the acceptance of such systems. Thus, added to the model five TAM constructs related to critical success factors in implementing ERP systems, they are: support of top management, communication, training, cooperation, and technological complexity (BUENO and SALMERON, 2008). Based on the foregoing, launches the following research problem: What factors influence the acceptance and use of SIE / module academic at the Federal University of Para, from the users' perception of teachers and technicians? The purpose of this study was to identify the influence of organizational factors, and behavioral antecedents of behavioral intention to use the SIE / module academic UFPA in the perspective of teachers and technical users. This is applied research, exploratory and descriptive, quantitative with the implementation of a survey, and data collection occurred through a structured questionnaire applied to a sample of 229 teachers and 30 technical and administrative staff. Data analysis was carried out through descriptive statistics and structural equation modeling with the technique of partial least squares (PLS). Effected primarily to assess the measurement model, which were verified reliability, convergent and discriminant validity for all indicators and constructs. Then the structural model was analyzed using the bootstrap resampling technique like. In assessing statistical significance, all hypotheses were supported. The coefficient of determination (R ²) was high or average in five of the six endogenous variables, so the model explains 47.3% of the variation in behavioral intention. It is noteworthy that among the antecedents of behavioral intention (BI) analyzed in this study, perceived usefulness is the variable that has a greater effect on behavioral intention, followed by ease of use (PEU) and attitude (AT). Among the organizational aspects (critical success factors) studied technological complexity (TC) and training (ERT) were those with greatest effect on behavioral intention to use, although these effects were lower than those produced by behavioral factors (originating from TAM). It is pointed out further that the support of senior management (TMS) showed, among all variables, the least effect on the intention to use (BI) and was followed by communications (COM) and cooperation (CO), which exert a low effect on behavioral intention (BI). Therefore, as other studies on the TAM constructs were adequate for the present research. Thus, the study contributed towards proving evidence that the Technology Acceptance Model can be applied to predict the acceptance of integrated management systems, even in public. Keywords: Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our research sought to address the extent to which the northern snakehead (Channa argus), an invasive fish species, represents a threat to the Potomac River ecosystem. The first goal of our research was to survey the perceptions and opinions of recreational anglers on the effects of the snakehead population in the Potomac River ecosystem. To determine angler perceptions, we created and administered 113 surveys from June – September 2014 at recreational boat ramps along the Potomac River. Our surveys were designed to expand information collected during previous surveys conducted by the U.S. Fish and Wildlife Service. Our results indicated recreational anglers perceive that abundances and catch rates of target species, specifically largemouth bass, have declined since snakehead became established in the river. The second goal of our research was to determine the genetic diversity and potential of the snakehead population to expand in the Potomac River. We hypothesized that the effective genetic population size would be much less than the census size of the snakehead population in the Potomac River. We collected tissue samples (fin clippings) from 79 snakehead collected in a recreational tournament held between Fort Washington and Wilson’s Landing, MD on the Potomac River and from electrofishing sampling conducted by the Maryland Department of Natural Resources in Pomonkey Creek, a tributary of the Potomac River. DNA was extracted from the tissue samples and scored for 12 microsatellite markers, which had previously been identified for Potomac River snakehead. Microsatellite allele frequency data were recorded and analyzed in the software programs GenAlEx and NeEstimator to estimate heterozygosity and effective genetic population size. Resampling simulations indicated that the number of microsatellites and the number of fish analyzed provided sufficient precision. Simulations indicated that the effective population size estimate would expect to stabilize for samples > 70 individual snakehead. Based on a sample of 79 fish scored for 12 microsatellites, we calculated an Ne of 15.3 individuals. This is substantially smaller than both the sample size and estimated population size. We conclude that genetic diversity in the snakehead population in the Potomac River is low because the population has yet to recover from a genetic bottleneck associated with a founder effect due to their recent introduction into the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most significant research topics in computer vision is object detection. Most of the reported object detection results localise the detected object within a bounding box, but do not explicitly label the edge contours of the object. Since object contours provide a fundamental diagnostic of object shape, some researchers have initiated work on linear contour feature representations for object detection and localisation. However, linear contour feature-based localisation is highly dependent on the performance of linear contour detection within natural images, and this can be perturbed significantly by a cluttered background. In addition, the conventional approach to achieving rotation-invariant features is to rotate the feature receptive field to align with the local dominant orientation before computing the feature representation. Grid resampling after rotation adds extra computational cost and increases the total time consumption for computing the feature descriptor. Though it is not an expensive process if using current computers, it is appreciated that if each step of the implementation is faster to compute especially when the number of local features is increasing and the application is implemented on resource limited ”smart devices”, such as mobile phones, in real-time. Motivated by the above issues, a 2D object localisation system is proposed in this thesis that matches features of edge contour points, which is an alternative method that takes advantage of the shape information for object localisation. This is inspired by edge contour points comprising the basic components of shape contours. In addition, edge point detection is usually simpler to achieve than linear edge contour detection. Therefore, the proposed localization system could avoid the need for linear contour detection and reduce the pathological disruption from the image background. Moreover, since natural images usually comprise many more edge contour points than interest points (i.e. corner points), we also propose new methods to generate rotation-invariant local feature descriptors without pre-rotating the feature receptive field to improve the computational efficiency of the whole system. In detail, the 2D object localisation system is achieved by matching edge contour points features in a constrained search area based on the initial pose-estimate produced by a prior object detection process. The local feature descriptor obtains rotation invariance by making use of rotational symmetry of the hexagonal structure. Therefore, a set of local feature descriptors is proposed based on the hierarchically hexagonal grouping structure. Ultimately, the 2D object localisation system achieves a very promising performance based on matching the proposed features of edge contour points with the mean correct labelling rate of the edge contour points 0.8654 and the mean false labelling rate 0.0314 applied on the data from Amsterdam Library of Object Images (ALOI). Furthermore, the proposed descriptors are evaluated by comparing to the state-of-the-art descriptors and achieve competitive performances in terms of pose estimate with around half-pixel pose error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series. First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in reproducing observed flood frequencies. The presented model has the potential to be used for ungauged locations through regionalisation of the model parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades the public sector comes under pressure in order to improve its performance. The use of Information Technology (IT) has been a tool increasingly used in reaching that goal. Thus, it has become an important issue in public organizations, particularly in institutions of higher education, determine which factors influence the acceptance and use of technology, impacting on the success of its implementation and the desired organizational results. The Technology Acceptance Model - TAM was used as the basis for this study and is based on the constructs perceived usefulness and perceived ease of use. However, when it comes to integrated management systems due to the complexity of its implementation,organizational factors were added to thus seek further explanation of the acceptance of such systems. Thus, added to the model five TAM constructs related to critical success factors in implementing ERP systems, they are: support of top management, communication, training, cooperation, and technological complexity (BUENO and SALMERON, 2008). Based on the foregoing, launches the following research problem: What factors influence the acceptance and use of SIE / module academic at the Federal University of Para, from the users' perception of teachers and technicians? The purpose of this study was to identify the influence of organizational factors, and behavioral antecedents of behavioral intention to use the SIE / module academic UFPA in the perspective of teachers and technical users. This is applied research, exploratory and descriptive, quantitative with the implementation of a survey, and data collection occurred through a structured questionnaire applied to a sample of 229 teachers and 30 technical and administrative staff. Data analysis was carried out through descriptive statistics and structural equation modeling with the technique of partial least squares (PLS). Effected primarily to assess the measurement model, which were verified reliability, convergent and discriminant validity for all indicators and constructs. Then the structural model was analyzed using the bootstrap resampling technique like. In assessing statistical significance, all hypotheses were supported. The coefficient of determination (R ²) was high or average in five of the six endogenous variables, so the model explains 47.3% of the variation in behavioral intention. It is noteworthy that among the antecedents of behavioral intention (BI) analyzed in this study, perceived usefulness is the variable that has a greater effect on behavioral intention, followed by ease of use (PEU) and attitude (AT). Among the organizational aspects (critical success factors) studied technological complexity (TC) and training (ERT) were those with greatest effect on behavioral intention to use, although these effects were lower than those produced by behavioral factors (originating from TAM). It is pointed out further that the support of senior management (TMS) showed, among all variables, the least effect on the intention to use (BI) and was followed by communications (COM) and cooperation (CO), which exert a low effect on behavioral intention (BI). Therefore, as other studies on the TAM constructs were adequate for the present research. Thus, the study contributed towards proving evidence that the Technology Acceptance Model can be applied to predict the acceptance of integrated management systems, even in public. Keywords: Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A investigação na área da saúde e a utilização dos seus resultados tem funcionado como base para a melhoria da qualidade de cuidados, exigindo dos profissionais de saúde conhecimentos na área específica onde desempenham funções, conhecimentos em metodologia de investigação que incluam as técnicas de observação, técnicas de recolha e análise de dados, para mais facilmente serem leitores capacitados dos resultados da investigação. Os profissionais de saúde são observadores privilegiados das respostas humanas à saúde e à doença, podendo contribuir para o desenvolvimento e bem-estar dos indivíduos muitas vezes em situações de grande vulnerabilidade. Em saúde infantil e pediatria o enfoque está nos cuidados centrados na família privilegiando-se o desenvolvimento harmonioso da criança e jovem, valorizando os resultados mensuráveis em saúde que permitam determinar a eficácia das intervenções e a qualidade de saúde e de vida. No contexto pediátrico realçamos as práticas baseadas na evidência, a importância atribuída à pesquisa e à aplicação dos resultados da investigação nas práticas clínicas, assim como o desenvolvimento de instrumentos de mensuração padronizados, nomeadamente as escalas de avaliação, de ampla utilização clínica, que facilitam a apreciação e avaliação do desenvolvimento e da saúde das crianças e jovens e resultem em ganhos em saúde. A observação de forma sistematizada das populações neonatais e pediátricas com escalas de avaliação tem vindo a aumentar, o que tem permitido um maior equilíbrio na avaliação das crianças e também uma observação baseada na teoria e nos resultados da investigação. Alguns destes aspetos serviram de base ao desenvolvimento deste trabalho que pretende dar resposta a 3 objetivos fundamentais. Para dar resposta ao primeiro objetivo, “Identificar na literatura científica, os testes estatísticos mais frequentemente utilizados pelos investigadores da área da saúde infantil e pediatria quando usam escalas de avaliação” foi feita uma revisão sistemática da literatura, que tinha como objetivo analisar artigos científicos cujos instrumentos de recolha de dados fossem escalas de avaliação, na área da saúde da criança e jovem, desenvolvidas com variáveis ordinais, e identificar os testes estatísticos aplicados com estas variáveis. A análise exploratória dos artigos permitiu-nos verificar que os investigadores utilizam diferentes instrumentos com diferentes formatos de medida ordinal (com 3, 4, 5, 7, 10 pontos) e tanto aplicam testes paramétricos como não paramétricos, ou os dois em simultâneo, com este tipo de variáveis, seja qual for a dimensão da amostra. A descrição da metodologia nem sempre explicita se são cumpridas as assunções dos testes. Os artigos consultados nem sempre fazem referência à distribuição de frequência das variáveis (simetria/assimetria) nem à magnitude das correlações entre os itens. A leitura desta bibliografia serviu de suporte à elaboração de dois artigos, um de revisão sistemática da literatura e outro de reflexão teórica. Apesar de terem sido encontradas algumas respostas às dúvidas com que os investigadores e os profissionais, que trabalham com estes instrumentos, se deparam, verifica-se a necessidade de desenvolver estudos de simulação que confirmem algumas situações reais e alguma teoria já existente, e trabalhem outros aspetos nos quais se possam enquadrar os cenários reais de forma a facilitar a tomada de decisão dos investigadores e clínicos que utilizam escalas de avaliação. Para dar resposta ao segundo objetivo “Comparar a performance, em termos de potência e probabilidade de erro de tipo I, das 4 estatísticas da MANOVA paramétrica com 2 estatísticas da MANOVA não paramétrica quando se utilizam variáveis ordinais correlacionadas, geradas aleatoriamente”, desenvolvemos um estudo de simulação, através do Método de Monte Carlo, efetuado no Software R. O delineamento do estudo de simulação incluiu um vetor com 3 variáveis dependentes, uma variável independente (fator com três grupos), escalas de avaliação com um formato de medida com 3, 4, 5, e 7 pontos, diferentes probabilidades marginais (p1 para distribuição simétrica, p2 para distribuição assimétrica positiva, p3 para distribuição assimétrica negativa e p4 para distribuição uniforme) em cada um dos três grupos, correlações de baixa, média e elevada magnitude (r=0.10, r=0.40, r=0.70, respetivamente), e seis dimensões de amostras (n=30, 60, 90, 120, 240, 300). A análise dos resultados permitiu dizer que a maior raiz de Roy foi a estatística que apresentou estimativas de probabilidade de erro de tipo I e de potência de teste mais elevadas. A potência dos testes apresenta comportamentos diferentes, dependendo da distribuição de frequência da resposta aos itens, da magnitude das correlações entre itens, da dimensão da amostra e do formato de medida da escala. Tendo por base a distribuição de frequência, considerámos três situações distintas: a primeira (com probabilidades marginais p1,p1,p4 e p4,p4,p1) em que as estimativas da potência eram muito baixas, nos diferentes cenários; a segunda situação (com probabilidades marginais p2,p3,p4; p1,p2,p3 e p2,p2,p3) em que a magnitude das potências é elevada, nas amostras com dimensão superior ou igual a 60 observações e nas escalas com 3, 4,5 pontos e potências de magnitude menos elevada nas escalas com 7 pontos, mas com a mesma ma magnitude nas amostras com dimensão igual a 120 observações, seja qual for o cenário; a terceira situação (com probabilidades marginais p1,p1,p2; p1,p2,p4; p2,p2,p1; p4,p4,p2 e p2,p2,p4) em que quanto maiores, a intensidade das correlações entre itens e o número de pontos da escala, e menor a dimensão das amostras, menor a potência dos testes, sendo o lambda de Wilks aplicado às ordens mais potente do que todas as outra s estatísticas da MANOVA, com valores imediatamente a seguir à maior raiz de Roy. No entanto, a magnitude das potências dos testes paramétricos e não paramétricos assemelha-se nas amostras com dimensão superior a 90 observações (com correlações de baixa e média magnitude), entre as variáveis dependentes nas escalas com 3, 4 e 5 pontos; e superiores a 240 observações, para correlações de baixa intensidade, nas escalas com 7 pontos. No estudo de simulação e tendo por base a distribuição de frequência, concluímos que na primeira situação de simulação e para os diferentes cenários, as potências são de baixa magnitude devido ao facto de a MANOVA não detetar diferenças entre grupos pela sua similaridade. Na segunda situação de simulação e para os diferentes cenários, a magnitude das potências é elevada em todos os cenários cuja dimensão da amostra seja superior a 60 observações, pelo que é possível aplicar testes paramétricos. Na terceira situação de simulação, e para os diferentes cenários quanto menor a dimensão da amostra e mais elevada a intensidade das correlações e o número de pontos da escala, menor a potência dos testes, sendo a magnitude das potências mais elevadas no teste de Wilks aplicado às ordens, seguido do traço de Pillai aplicado às ordens. No entanto, a magnitude das potências dos testes paramétricos e não paramétricos assemelha-se nas amostras com maior dimensão e correlações de baixa e média magnitude. Para dar resposta ao terceiro objetivo “Enquadrar os resultados da aplicação da MANOVA paramétrica e da MANOVA não paramétrica a dados reais provenientes de escalas de avaliação com um formato de medida com 3, 4, 5 e 7 pontos, nos resultados do estudo de simulação estatística” utilizaram-se dados reais que emergiram da observação de recém-nascidos com a escala de avaliação das competências para a alimentação oral, Early Feeding Skills (EFS), o risco de lesões da pele, com a Neonatal Skin Risk Assessment Scale (NSRAS), e a avaliação da independência funcional em crianças e jovens com espinha bífida, com a Functional Independence Measure (FIM). Para fazer a análise destas escalas foram realizadas 4 aplicações práticas que se enquadrassem nos cenários do estudo de simulação. A idade, o peso, e o nível de lesão medular foram as variáveis independentes escolhidas para selecionar os grupos, sendo os recém-nascidos agrupados por “classes de idade gestacional” e por “classes de peso” as crianças e jovens com espinha bífida por “classes etárias” e “níveis de lesão medular”. Verificou-se um bom enquadramento dos resultados com dados reais no estudo de simulação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study computed trends in extreme precipitation events of Florida for 1950-2010. Hourly aggregated rainfall data from 24 stations of the National Climatic Data Centre were analyzed to derive time-series of extreme rainfalls for 12 durations, ranging from 1 hour to 7 day. Non-parametric Mann-Kendall test and Theil-Sen Approach were applied to detect the significance of trends in annual maximum rainfalls, number of above threshold events and average magnitude of above threshold events for four common analysis periods. Trend Free Pre-Whitening (TFPW) approach was applied to remove the serial correlations and bootstrap resampling approach was used to detect the field significance of trends. The results for annual maximum rainfall revealed dominant increasing trends at the statistical significance level of 0.10, especially for hourly events in longer period and daily events in recent period. The number of above threshold events exhibited strong decreasing trends for hourly durations in all time periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A necessidade de conhecer uma população impulsiona um processo de recolha e análise de informação. Usualmente é muito difícil ou impossível estudar a totalidade da população, daí a importância do estudo com recurso a amostras. Conceber um estudo por amostragem é um processo complexo, desde antes da recolha dos dados até a fase de análise dos mesmos. Na maior parte dos estudos utilizam-se combinações de vários métodos probabilísticos de amostragem para seleção de uma amostra, que se pretende representativa da população, denominado delineamento de amostragem complexo. O conhecimento dos erros de amostragem é necessário à correta interpretação dos resultados de inquéritos e à avaliação dos seus planos de amostragem. Em amostras complexas, têm sido usadas aproximações ajustadas à natureza complexa do plano da amostra para a estimação da variância, sendo as mais utilizadas: o método de linearização Taylor e as técnicas de reamostragem e replicação. O principal objetivo deste trabalho é avaliar o desempenho dos estimadores usuais da variância em amostras complexas. Inspirado num conjunto de dados reais foram geradas três populações com características distintas, das quais foram sorteadas amostras com diferentes delineamentos de amostragem, na expectativa de obter alguma indicação sobre em que situações se deve optar por cada um dos estimadores da variância. Com base nos resultados obtidos, podemos concluir que o desempenho dos estimadores da variância da média amostral de Taylor, Jacknife e Bootstrap varia com o tipo de delineamento e população. De um modo geral, o estimador de Bootstrap é o menos preciso e em delineamentos estratificados os estimadores de Taylor e Jackknife fornecem os mesmos resultados; Evaluation of variance estimation methods in complex samples ABSTRACT: The need to know a population drives a process of collecting and analyzing information. Usually is to hard or even impossible to study the whole population, hence the importance of sampling. Framing a study by sampling is a complex process, from before the data collection until the data analysis. Many studies have used combinations of various probabilistic sampling methods for selecting a representative sample of the population, calling it complex sampling design. Knowledge of sampling errors is essential for correct interpretation of the survey results and evaluation of the sampling plans. In complex samples to estimate the variance has been approaches adjusted to the complex nature of the sample plane. The most common are: the linearization method of Taylor and techniques of resampling and replication. The main objective of this study is to evaluate the performance of usual estimators of the variance in complex samples. Inspired on real data we will generate three populations with distinct characteristics. From this populations will be drawn samples using different sampling designs. In the end we intend to get some lights about in which situations we should opt for each one of the variance estimators. Our results show that the performance of the variance estimators of sample mean Taylor, Jacknife and Bootstrap varies with the design and population. In general, the Bootstrap estimator is less precise and in stratified design Taylor and Jackknife estimators provide the same results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).