936 resultados para Reliability in automation
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
In recent years Electric Vehicles (EVs) are getting more importance as future transport systems, due to the increase of the concerns relevant to the greenhouse gases emission and the use fossil fuel. The management of the charging and discharging process of EVs could provide new business model for participating in the electricity markets. Moreover, vehicle to grid systems have the potential of increasing utility system flexibility. This thesis develops some models for the optimal integration of the EVs in the electricity market. In particular, the thesis focuses on the optimal bidding strategy of an EV aggregator participating to both the day ahead market and the secondary reserve market. The aggregator profit is maximized taking into account the energy balance equation, as well as the technical constraints of energy settlement, power supply and state of charge of the EVs. The results obtained by using the GAMS (General Algebraic Modelling System) environment are presented and discussed.
Resumo:
Il progetto di tesi è incentrato sull’ottimizzazione del procedimento di taratura dei regolatori lineari degli anelli di controllo di posizione e velocità presenti negli azionamenti usati industrialmente su macchine automatiche, specialmente quando il carico è ad inerzia variabile in dipendenza dalla posizione, dunque non lineare, come ad esempio un quadrilatero articolato. Il lavoro è stato svolto in collaborazione con l’azienda G.D S.p.A. ed il meccanismo di prova è realmente utilizzato nelle macchine automatiche per il packaging di sigarette. L’ottimizzazione si basa sulla simulazione in ambiente Matlab/Simulink dell’intero sistema di controllo, cioè comprensivo del modello Simulink degli anelli di controllo del drive, inclusa la dinamica elettrica del motore, e del modello Simscape del meccanismo, perciò una prima necessaria fase del lavoro è stata la validazione di tali modelli affinché fossero sufficientemente fedeli al comportamento reale. Il secondo passo è stato fornire una prima taratura di tentativo che fungesse da punto di partenza per l’algoritmo di ottimizzazione, abbiamo fatto ciò linearizzando il modello meccanico con l’inerzia minima e utilizzando il metodo delle formule di inversione per determinare i parametri di controllo. Già questa taratura, seppur conservativa, ha portato ad un miglioramento delle performance del sistema rispetto alla taratura empirica comunemente fatta in ambito industriale. Infine, abbiamo lanciato l’algoritmo di ottimizzazione definendo opportunamente la funzione di costo, ed il risultato è stato decisamente positivo, portando ad un miglioramento medio del massimo errore di inseguimento di circa il 25%, ma anche oltre il 30% in alcuni casi.
Resumo:
Advancements in technology have enabled increasingly sophisticated automation to be introduced into the flight decks of modern aircraft. Generally, this automation was added to accomplish worthy objectives such as reducing flight crew workload, adding additional capability, or increasing fuel economy. Automation is necessary due to the fact that not all of the functions required for mission accomplishment in today’s complex aircraft are within the capabilities of the unaided human operator, who lacks the sensory capacity to detect much of the information required for flight. To a large extent, these objectives have been achieved. Nevertheless, despite all the benefits from the increasing amounts of highly reliable automation, vulnerabilities do exist in flight crew management of automation and Situation Awareness (SA). Issues associated with flight crew management of automation include: • Pilot understanding of automation’s capabilities, limitations, modes, and operating principles and techniques. • Differing pilot decisions about the appropriate automation level to use or whether to turn automation on or off when they get into unusual or emergency situations. • Human-Machine Interfaces (HMIs) are not always easy to use, and this aspect could be problematic when pilots experience high workload situations. • Complex automation interfaces, large differences in automation philosophy and implementation among different aircraft types, and inadequate training also contribute to deficiencies in flight crew understanding of automation.
Resumo:
Ground deformation provides valuable insights on subsurface processes with pattens reflecting the characteristics of the source at depth. In active volcanic sites displacements can be observed in unrest phases; therefore, a correct interpretation is essential to assess the hazard potential. Inverse modeling is employed to obtain quantitative estimates of parameters describing the source. However, despite the robustness of the available approaches, a realistic imaging of these reservoirs is still challenging. While analytical models return quick but simplistic results, assuming an isotropic and elastic crust, more sophisticated numerical models, accounting for the effects of topographic loads, crust inelasticity and structural discontinuities, require much higher computational effort and information about the crust rheology may be challenging to infer. All these approaches are based on a-priori source shape constraints, influencing the solution reliability. In this thesis, we present a new approach aimed at overcoming the aforementioned limitations, modeling sources free of a-priori shape constraints with the advantages of FEM simulations, but with a cost-efficient procedure. The source is represented as an assembly of elementary units, consisting in cubic elements of a regular FE mesh loaded with a unitary stress tensors. The surface response due to each of the six stress tensor components is computed and linearly combined to obtain the total displacement field. In this way, the source can assume potentially any shape. Our tests prove the equivalence of the deformation fields due to our assembly and that of corresponding cavities with uniform boundary pressure. Our ability to simulate pressurized cavities in a continuum domain permits to pre-compute surface responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm implementing this strategy is developed. 3D Voronoi cells are used to sample the model domain, selecting the elementary units contributing to the source solution and those remaining inactive as part of the crust.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
The computer controlled screwdriver is a modern technique to perform automatic screwing/unscrewing operations.The main focus is to study the integration of the computer controlled screwdriver for Robotic manufacturing in the ROS environment.This thesis describes a concept of automatic screwing mechanism composed by universal robots, in which one arm of the robot is for inserting cables and the other is for screwing the cables on the control panel switch gear box. So far this mechanism is carried out by human operators and is a fairly complex one to perform, due to the multiple cables and connections involved. It's for this reason that an automatic cabling and screwing process would be highly preferred within automotive/automation industries. A study is carried out to analyze the difficulties currently faced and a controller based algorithm is developed to replace the manual human efforts using universal robots, thereby allowing robot arms to insert the cables and screw them onto the control panel switch gear box. Experiments were conducted to evaluate the insertion and screwing strategy, which shows the result of inserting and screwing cables on the control panel switch gearbox precisely.
Resumo:
Elaborate presents automated guided vehicle state-of-art, describing AGVs' types and employed technologies. AGVs' applications is going to be exposed by means of performed work during Toyota's internship. It will be presented the acquired experience on automatic forklifts' implementation and tools employed in a realization of an AGV system. Morover, it will be presented the development of a python program able to retrieve data, stored in a database, and elaborate them to produce heatmaps on vehicles' errors. The said program has been tested live on customer's sites and obtained result will be explained. Finally, it is going to be presented the analysis on natural navigation technology applied to Toyota's AGVs. Tests on natural navigation have been run in warehouses to estimate capabilities and possible application in logistic field.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.
Resumo:
In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.
Resumo:
Considering the great development of robotics in industrial automation, the Remodel project aims to reproduce, through the use of Cobots, the wiring activity typical of a human operator and to realize an autonomous storage work. My researches focused on this second topic. In this paper, we will see how to realize a gripper compatible with an Omron TM5X-900, able to perform a pick and place of different types of cables, but also how to compute possible trajectories. In particular, what I needed, was a trajectory going from the Komax, the cables production machine, to a Warehouse taking into account the possible entangles of cables with the robot during its motion. The last part has been dedicated to the synchronization between robot and main machine work.
Resumo:
Depth estimation from images has long been regarded as a preferable alternative compared to expensive and intrusive active sensors, such as LiDAR and ToF. The topic has attracted the attention of an increasingly wide audience thanks to the great amount of application domains, such as autonomous driving, robotic navigation and 3D reconstruction. Among the various techniques employed for depth estimation, stereo matching is one of the most widespread, owing to its robustness, speed and simplicity in setup. Recent developments has been aided by the abundance of annotated stereo images, which granted to deep learning the opportunity to thrive in a research area where deep networks can reach state-of-the-art sub-pixel precision in most cases. Despite the recent findings, stereo matching still begets many open challenges, two among them being finding pixel correspondences in presence of objects that exhibits a non-Lambertian behaviour and processing high-resolution images. Recently, a novel dataset named Booster, which contains high-resolution stereo pairs featuring a large collection of labeled non-Lambertian objects, has been released. The work shown that training state-of-the-art deep neural network on such data improves the generalization capabilities of these networks also in presence of non-Lambertian surfaces. Regardless being a further step to tackle the aforementioned challenge, Booster includes a rather small number of annotated images, and thus cannot satisfy the intensive training requirements of deep learning. This thesis work aims to investigate novel view synthesis techniques to augment the Booster dataset, with ultimate goal of improving stereo matching reliability in presence of high-resolution images that displays non-Lambertian surfaces.
Resumo:
The main theme covered by this dissertation is safety, set in the context of automatic machinery for secondary woodworking. The thesis describes in detail the project of a software module for CNC machining centers to protect the operator against hazards and to report errors in the machine safety management. Its design has been developed during an internship at SCM Group technical department. The development of the safety module is addressed step by step in a detailed way: first the company and the reference framework are introduced and then all the design choices are explained and justified. The discussion begins with a detailed analysis of the standards concerning woodworking machines and safety-related software. In this way, a clear and linear procedure can be established to develop and implement the internal structure of the module, its interface, and its application to specific safety-critical conditions. Afterwards, particular attention is paid to software testing, with the development of a comprehensive test procedure for the module, and to diagnostics, especially oriented towards signal management in IoT mode. Finally, the safety module is used as an anti-regression tool to initiate a design improvement of the machine control program. The refactoring steps performed in the process are explained in detail and the SCENT approach is introduced to test the result.
Resumo:
Among the important changes in the production processes, it is necessary to guarantee the sustainability of the human enterprises, what makes us to foresee changes in the managerial administration to adapt to a new model, with the insert of the concepts of Clean Production, Cleaner, Lean and Total Productive Maintenance (TPM). The main focus of this work was to elaborate a methodology that made it possible to guarantee the reliability in the waterworks of the sugarcane harvester, identifying and analyzing the manners of flaws, in order to result in the improvement of the environmental and socioeconomic quality in the atmosphere of an industry of sugarcane through the significant decrease of hydraulic oil spill. Through the existent report in ERP (Enterprise Resource Planning), used in a Sugarcane Industry Plant, it was possible to accompany of the operational acting of the sugarcane harvester used during 03 crops, regarding the manners of flaws in the waterworks of the same ones, and, in one of the crops it was elaborated the total control of the waterworks of 5 harvesters. Based on the obtained data and the developed methodology it was possible to develop a software that specifies the electric outlet of decisions.