957 resultados para Redes neuronales artificiales - Arquitecturas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las dificultades a las que los estudiantes se enfrentan y su lucha por dominar los temas, podría aumentar como consecuencia de la inadecuada utilización de materiales de evaluación. Generalmente se encuentran en el aula alumnos que hacen buen uso del material de los cursos y de una manera rápida, mientras que otros presentan dificultades con el aprendizaje del material. Esta situación es fácilmente visto en los resultados de los exámenes, un grupo de estudiantes podrían obtener buenas calificaciones animándoles, mientras que otros obtendrían la mala percepción de que los temas son difíciles, y en algunos casos, obligándolos a abandonar el curso o en otros casos a cambiar de carrera. Creemos que mediante el uso de técnicas de aprendizaje automático, y en nuestro caso la utilización de redes neuronales, sería factible crear un entorno de evaluación que podrían ajustarse a las necesidades de cada estudiante. Esto último disminuiría la sensación de insatisfacción de los alumnos y el abandono de los cursos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de este trabajo es la construcción de un modelo para predecir la insolvencia de las empresas familiares. El hecho de centrarnos en esta tipología de empresas deriva de dos motivos esenciales: Primero, por la importante participación de la empresa familiar en el ámbito de la economía española, así como en la economía mundial (Allouche et al., 2008). España tiene en la actualidad 1,1 millones de empresas familiares, un 85% del total de empresas, las cuales generan siete millones de empleos directos, esto es, un 70% del empleo privado. Este hecho ha provocado que la investigación en el campo de la empresa familiar haya crecido significativamente durante las dos últimas décadas (Gómez-Mejia et al., 2011). Y segundo, porque pensamos que las diferencias y características propias de la empresa familiar deberían tomarse en consideración para la predicción de la insolvencia empresarial. Estas circunstancias han motivado el interés en analizar las causas que propician la insolvencia en las empresas familiares e intentar facilitar herramientas o estrategias a los gestores de las mismas, con vistas a evitarla y asegurar la viabilidad de sus empresas. Además, hasta la fecha no se ha estudiado la predicción de insolvencia en las empresas familiares, donde encontramos un gap que pretendemos cubrir con la presente investigación. En consecuencia, la inexistencia de trabajos empíricos con muestras específicas de empresas familiares, tanto españolas como internacionales, hace especialmente interesante que analicemos las causas que propician su posible insolvencia. Por ello, y con objeto de contar con un mayor margen para realizar estrategias que eviten la insolvencia de este tipo de empresas, pretendemos obtener modelos que tengan como objeto predecirla 1, 2 y 3 años antes de que ésta se produzca, comparándose las similitudes y diferencias de dichos modelos a medida que nos alejamos del momento de la insolvencia. Con objeto de resolver esta cuestión de investigación hemos dispuesto de seis muestras elaboradas a partir de una base de datos creada expresamente para el presente estudio, y que incluirá información económico-financiera de empresas familiares y no familiares, tanto solventes como insolventes. Estas muestras contienen un número suficiente de empresas para construir fiables modelos de predicción y conocer las variables predictivas propias de cada una de ellas. Así mismo, y con objeto de dotar de robustez a los modelos, se ha considerado un período total de análisis de ocho años, comprendidos entre el ejercicio 2005 y el 2012, periodo que abarcaría varios ciclos económicos y, en consecuencia, evita el riesgo de obtener modelos sólo válidos para épocas de crecimiento o, en su caso, de decrecimiento económico. En el análisis empírico desarrollado utilizaremos dos métodos diferentes para predecir la insolvencia: técnicas de regresión logística (LOGIT) y técnicas computacionales de redes neuronales (NN). Si bien los modelos LOGIT han tenido y siguen manteniendo una especial relevancia en los estudios realizados en esta materia en los últimos treinta y cinco años, los modelos NN se corresponden con metodologías más avanzadas, que han mostrado tener un importante potencial en el ámbito de la predicción. La principal ventaja de los modelos LOGIT reside, no sólo en la capacidad de predecir previamente si una empresa se espera resulte solvente e insolvente, sino en facilitar información respecto a cuáles son las variables que resultan significativamente explicativas de la insolvencia, y en consecuencia, permiten deducir estrategias adecuadas en la gestión de la empresa con objeto de asegurar la solvencia de la misma. Por su parte, los modelos NN presentan un gran potencial de clasificación, superando en la mayoría de los casos al LOGIT, si bien su utilidad explicativa está menos contrastada. Nuestro estudio contribuye a la literatura existente sobre predicción de insolvencia de varias formas. En primer lugar, construyendo modelos específicos para empresas familiares y no familiares, lo que puede mejorar la eficiencia en la predicción del fracaso empresarial y evitar el concurso de acreedores, así como las consecuencias negativas de la insolvencia empresarial para la economía en general, dada la importancia de la empresa familiar en el mundo. En segundo lugar, nuestras conclusiones sugieren que la relación entre la evolución de ciertas variables financieras y la insolvencia empresarial toma connotaciones específicas en el caso de las empresas familiares. Aunque los modelos de predicción de insolvencia confirman la importancia de algunas variables financieras comunes para ambos tipos de empresas (eficiencia y dimensión empresarial), también identifican factores específicos y únicos. Así, la rentabilidad es el factor diferenciador para las empresas familiares como lo es el apalancamiento para las empresas no familiares.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los mercados asociados a los servicios de voz móvil a móvil, brindados por operadoras del Sistema Móvil Avanzado en Latinoamérica, han estado sujetos a procesos regulatorios motivados por la dominancia en el mercado de un operador, buscando obtener óptimas condiciones de competencia. Específicamente en Ecuador, la Superintendencia de Telecomunicaciones (Organismo Técnico de Control de Telecomunicaciones) desarrolló un modelo para identificar acciones de regulación que puedan proporcionar al mercado efectos sostenibles de competencia en el largo plazo. Este artículo trata sobre la aplicación de la ingeniería de control para desarrollar un modelo integral del mercado, empleando redes neuronales para la predicción de trarifas de cada operador y un modelo de lógica difusa para predecir la demanda. Adicionalmente, se presenta un modelo de inferencia de lógica difusa para reproducir las estrategias de mercadeo de los operadores y la influencia sobre las tarifas. Dichos modelos permitirían la toma adecuada de decisiones y fueron validados con datos reales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo nace de una idea conjunta del desarrollo de un software capaz de trabajar con una máquina de rayos X para la toma de mamografías, y ser una herramienta para los radiólogos a la hora de analizar las imágenes y localizar zonas que pudieran ser sensibles de tener algún tipo de tumoración. No se trata de un software que pretenda suplantar la función de un radiólogo; es importante tener claro que el experto en radiología es el único capaz de analizar, comparar y tomar decisiones reales, y este software pretende simplificar esa tarea al máximo. Este programa utiliza como recursos para su funcionamiento una base de datos de mamografías procesadas anteriormente, a partir de las cuales entrena a la red neuronal para que sea capaz de clasificar mamografías nuevas y mostrar las posibles zonas críticas. Esta base de datos debe indicar a la red qué mamografías presentan algún tumor y dónde, para que la red aprenda a diferenciar entre zonas críticas y zonas no críticas. Esta idea deriva en la realización de dos trabajos que se especializan en los dos ámbitos del proyecto, en primer lugar el procesamiento y el análisis de esas mamografías obtenidas de la máquina de rayos X, que da lugar al presente trabajo; y en segundo lugar, deriva en un trabajo paralelo que explica la obtención, el análisis y la clasificación de los datos que se desprenden de este proyecto utilizando redes neuronales, titulado “Detección y clasificación de tumores en mamografías a través de redes neuronales”; realizado por Rodrigo Culotta López

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este Trabajo Fin de Grado se lleva a cabo la implementación de un mundo 3D a través del uso del entorno Unity en el se cual realizará el desarrollo de un agente 3D el cual interactúe con el entorno que le rodea. Para ello haremos uso de algoritmos relacionado con la inteligencia artificial así como aplicación de algoritmos relacionados con la minería de datos tales como redes neuronales basando su aprendizaje en algoritmos evolutivos o arboles de decisión, respectivamente. Así pues, el objetivo de este proyecto es la creación de un agente 3D el cual sea capaz de adaptarse al entorno que le rodea, siendo hostiles algunos de estos entornos. Habrá principalmente 2 entornos los cuales serán una ciudad donde el agente deberá recoger clientes en su rol de taxista y soltarlas reconociendo a través de una serie de variables que personas son de fiar y cuales no. El segundo entorno es una cancha de baloncesto donde el agente deberá aprender a lanzar a canasta y reconocer con qué estados meteorológicos es viable jugar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivos y método de estudio: En el presente trabajo se muestra la comparación de métodos formulados para dar solución a la inferencia de parámetros en redes de regulación genética artificiales. Este proyecto es motivado por un caso práctico en una red genética proveniente de líneas celulares de cáncer reales al que desea extenderse. Dentro de este estudio se incluyen evaluaciones empíricas donde se compara el desempeño de cada una de las metodologías presentadas tomando diversas muestras de datos mediante los modelos creados. El propósito de esta tesis es contrastar distintas metodologías desarrolladas para la inferencia de parámetros de redes genéticas artificiales. Esto con el fin de proporcionar evidencia sobre cu´al es m´as apropiada emplear, basándose en criterios de eficiencia y errores de muestra. Contribuciones y conclusiones: La contribución fundamental del presente trabajo radica en realizar un análisis de las metodologías creadas para inferir parámetros teniendo en cuenta la limitación de pocos datos atribuida a las escasas observaciones con las que se cuentan en experimentos en casos reales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Eléctrica con especialidad en Potencia) UANL, 1998

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Doctor en Ing. Eléctrica) U.A.N.L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território variante de Sistemas de Informação Geográfica e Detecção Remota

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monográfico con el título: 'Estudio de los comportamientos emocionales en la red'. Resumen basado en el de la publicación

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La informática teórica es una disciplina básica ya que la mayoría de los avances en informática se sustentan en un sólido resultado de esa materia. En los últimos a~nos debido tanto al incremento de la potencia de los ordenadores, como a la cercanía del límite físico en la miniaturización de los componentes electrónicos, resurge el interés por modelos formales de computación alternativos a la arquitectura clásica de von Neumann. Muchos de estos modelos se inspiran en la forma en la que la naturaleza resuelve eficientemente problemas muy complejos. La mayoría son computacionalmente completos e intrínsecamente paralelos. Por este motivo se les está llegando a considerar como nuevos paradigmas de computación (computación natural). Se dispone, por tanto, de un abanico de arquitecturas abstractas tan potentes como los computadores convencionales y, a veces, más eficientes: alguna de ellas mejora el rendimiento, al menos temporal, de problemas NPcompletos proporcionando costes no exponenciales. La representación formal de las redes de procesadores evolutivos requiere de construcciones, tanto independientes, como dependientes del contexto, dicho de otro modo, en general una representación formal completa de un NEP implica restricciones, tanto sintácticas, como semánticas, es decir, que muchas representaciones aparentemente (sintácticamente) correctas de casos particulares de estos dispositivos no tendrían sentido porque podrían no cumplir otras restricciones semánticas. La aplicación de evolución gramatical semántica a los NEPs pasa por la elección de un subconjunto de ellos entre los que buscar los que solucionen un problema concreto. En este trabajo se ha realizado un estudio sobre un modelo inspirado en la biología celular denominado redes de procesadores evolutivos [55, 53], esto es, redes cuyos nodos son procesadores muy simples capaces de realizar únicamente un tipo de mutación puntual (inserción, borrado o sustitución de un símbolo). Estos nodos están asociados con un filtro que está definido por alguna condición de contexto aleatorio o de pertenencia. Las redes están formadas a lo sumo de seis nodos y, teniendo los filtros definidos por una pertenencia a lenguajes regulares, son capaces de generar todos los lenguajes enumerables recursivos independientemente del grafo subyacente. Este resultado no es sorprendente ya que semejantes resultados han sido documentados en la literatura. Si se consideran redes con nodos y filtros definidos por contextos aleatorios {que parecen estar más cerca a las implementaciones biológicas{ entonces se pueden generar lenguajes más complejos como los lenguajes no independientes del contexto. Sin embargo, estos mecanismos tan simples son capaces de resolver problemas complejos en tiempo polinomial. Se ha presentado una solución lineal para un problema NP-completo, el problema de los 3-colores. Como primer aporte significativo se ha propuesto una nueva dinámica de las redes de procesadores evolutivos con un comportamiento no determinista y masivamente paralelo [55], y por tanto todo el trabajo de investigación en el área de la redes de procesadores se puede trasladar a las redes masivamente paralelas. Por ejemplo, las redes masivamente paralelas se pueden modificar de acuerdo a determinadas reglas para mover los filtros hacia las conexiones. Cada conexión se ve como un canal bidireccional de manera que los filtros de entrada y salida coinciden. A pesar de esto, estas redes son computacionalmente completas. Se pueden también implementar otro tipo de reglas para extender este modelo computacional. Se reemplazan las mutaciones puntuales asociadas a cada nodo por la operación de splicing. Este nuevo tipo de procesador se denomina procesador splicing. Este modelo computacional de Red de procesadores con splicing ANSP es semejante en cierto modo a los sistemas distribuidos en tubos de ensayo basados en splicing. Además, se ha definido un nuevo modelo [56] {Redes de procesadores evolutivos con filtros en las conexiones{ , en el cual los procesadores tan solo tienen reglas y los filtros se han trasladado a las conexiones. Dicho modelo es equivalente, bajo determinadas circunstancias, a las redes de procesadores evolutivos clásicas. Sin dichas restricciones el modelo propuesto es un superconjunto de los NEPs clásicos. La principal ventaja de mover los filtros a las conexiones radica en la simplicidad de la modelización. Otras aportaciones de este trabajo ha sido el dise~no de un simulador en Java [54, 52] para las redes de procesadores evolutivos propuestas en esta Tesis. Sobre el término "procesador evolutivo" empleado en esta Tesis, el proceso computacional descrito aquí no es exactamente un proceso evolutivo en el sentido Darwiniano. Pero las operaciones de reescritura que se han considerado pueden interpretarse como mutaciones y los procesos de filtrado se podrían ver como procesos de selección. Además, este trabajo no abarca la posible implementación biológica de estas redes, a pesar de ser de gran importancia. A lo largo de esta tesis se ha tomado como definición de la medida de complejidad para los ANSP, una que denotaremos como tama~no (considerando tama~no como el número de nodos del grafo subyacente). Se ha mostrado que cualquier lenguaje enumerable recursivo L puede ser aceptado por un ANSP en el cual el número de procesadores está linealmente acotado por la cardinalidad del alfabeto de la cinta de una máquina de Turing que reconoce dicho lenguaje L. Siguiendo el concepto de ANSP universales introducido por Manea [65], se ha demostrado que un ANSP con una estructura de grafo fija puede aceptar cualquier lenguaje enumerable recursivo. Un ANSP se puede considerar como un ente capaz de resolver problemas, además de tener otra propiedad relevante desde el punto de vista práctico: Se puede definir un ANSP universal como una subred, donde solo una cantidad limitada de parámetros es dependiente del lenguaje. La anterior característica se puede interpretar como un método para resolver cualquier problema NP en tiempo polinomial empleando un ANSP de tama~no constante, concretamente treinta y uno. Esto significa que la solución de cualquier problema NP es uniforme en el sentido de que la red, exceptuando la subred universal, se puede ver como un programa; adaptándolo a la instancia del problema a resolver, se escogerín los filtros y las reglas que no pertenecen a la subred universal. Un problema interesante desde nuestro punto de vista es el que hace referencia a como elegir el tama~no optimo de esta red.---ABSTRACT---This thesis deals with the recent research works in the area of Natural Computing {bio-inspired models{, more precisely Networks of Evolutionary Processors first developed by Victor Mitrana and they are based on P Systems whose father is Georghe Paun. In these models, they are a set of processors connected in an underlying undirected graph, such processors have an object multiset (strings) and a set of rules, named evolution rules, that transform objects inside processors[55, 53],. These objects can be sent/received using graph connections provided they accomplish constraints defined at input and output filters processors have. This symbolic model, non deterministic one (processors are not synchronized) and massive parallel one[55] (all rules can be applied in one computational step) has some important properties regarding solution of NP-problems in lineal time and of course, lineal resources. There are a great number of variants such as hybrid networks, splicing processors, etc. that provide the model a computational power equivalent to Turing machines. The origin of networks of evolutionary processors (NEP for short) is a basic architecture for parallel and distributed symbolic processing, related to the Connection Machine as well as the Logic Flow paradigm, which consists of several processors, each of them being placed in a node of a virtual complete graph, which are able to handle data associated with the respective node. All the nodes send simultaneously their data and the receiving nodes handle also simultaneously all the arriving messages, according to some strategies. In a series of papers one considers that each node may be viewed as a cell having genetic information encoded in DNA sequences which may evolve by local evolutionary events, that is point mutations. Each node is specialized just for one of these evolutionary operations. Furthermore, the data in each node is organized in the form of multisets of words (each word appears in an arbitrarily large number of copies), and all the copies are processed in parallel such that all the possible events that can take place do actually take place. Obviously, the computational process just described is not exactly an evolutionary process in the Darwinian sense. But the rewriting operations we have considered might be interpreted as mutations and the filtering process might be viewed as a selection process. Recombination is missing but it was asserted that evolutionary and functional relationships between genes can be captured by taking only local mutations into consideration. It is clear that filters associated with each node allow a strong control of the computation. Indeed, every node has an input and output filter; two nodes can exchange data if it passes the output filter of the sender and the input filter of the receiver. Moreover, if some data is sent out by some node and not able to enter any node, then it is lost. In this paper we simplify the ANSP model considered in by moving the filters from the nodes to the edges. Each edge is viewed as a two-way channel such that the input and output filters coincide. Clearly, the possibility of controlling the computation in such networks seems to be diminished. For instance, there is no possibility to loose data during the communication steps. In spite of this and of the fact that splicing is not a powerful operation (remember that splicing systems generates only regular languages) we prove here that these devices are computationally complete. As a consequence, we propose characterizations of two complexity classes, namely NP and PSPACE, in terms of accepting networks of restricted splicing processors with filtered connections. We proposed a uniform linear time solution to SAT based on ANSPFCs with linearly bounded resources. This solution should be understood correctly: we do not solve SAT in linear time and space. Since any word and auxiliary word appears in an arbitrarily large number of copies, one can generate in linear time, by parallelism and communication, an exponential number of words each of them having an exponential number of copies. However, this does not seem to be a major drawback since by PCR (Polymerase Chain Reaction) one can generate an exponential number of identical DNA molecules in a linear number of reactions. It is worth mentioning that the ANSPFC constructed above remains unchanged for any instance with the same number of variables. Therefore, the solution is uniform in the sense that the network, excepting the input and output nodes, may be viewed as a program according to the number of variables, we choose the filters, the splicing words and the rules, then we assign all possible values to the variables, and compute the formula.We proved that ANSP are computationally complete. Do the ANSPFC remain still computationally complete? If this is not the case, what other problems can be eficiently solved by these ANSPFCs? Moreover, the complexity class NP is exactly the class of all languages decided by ANSP in polynomial time. Can NP be characterized in a similar way with ANSPFCs?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente trabajo tiene como objetivo general el análisis de las técnicas de diseño y optimización de redes topográficas, observadas mediante topografía convencional (no satelital) el desarrollo e implementación de un sistema informático capaz de ayudar a la definición de la geometría más fiable y precisa, en función de la orografía del terreno donde se tenga que ubicar. En primer lugar se realizará un estudio de la metodología del ajuste mediante mínimos cuadrados y la propagación de varianzas, para posteriormente analizar su dependencia de la geometría que adopte la red. Será imprescindible determinar la independencia de la matriz de redundancia (R) de las observaciones y su total dependencia de la geometría, así como la influencia de su diagonal principal (rii), números de redundancia, para garantizar la máxima fiabilidad interna de la misma. También se analizará el comportamiento de los números de redundancia (rii) en el diseño de una red topográfica, la variación de dichos valores en función de la geometría, analizando su independencia respecto de las observaciones así como los diferentes niveles de diseño en función de los parámetros y datos conocidos. Ha de señalarse que la optimización de la red, con arreglo a los criterios expuestos, está sujeta a los condicionantes que impone la necesidad de que los vértices sean accesibles, y además sean visibles entre sí, aquellos relacionados por observaciones, situaciones que dependen esencialmente del relieve del terreno y de los obstáculos naturales o artificiales que puedan existir. Esto implica la necesidad de incluir en el análisis y en el diseño, cuando menos de un modelo digital del terreno (MDT), aunque lo más útil sería la inclusión en el estudio del modelo digital de superficie (MDS), pero esta opción no siempre será posible. Aunque el tratamiento del diseño esté basado en un sistema bidimensional se estudiará la posibilidad de incorporar un modelo digital de superficie (MDS); esto permitirá a la hora de diseñar el emplazamiento de los vértices de la red la viabilidad de las observaciones en función de la orografía y los elementos, tanto naturales como artificiales, que sobre ella estén ubicados. Este sistema proporcionaría, en un principio, un diseño óptimo de una red constreñida, atendiendo a la fiabilidad interna y a la precisión final de sus vértices, teniendo en cuenta la orografía, lo que equivaldría a resolver un planteamiento de diseño en dos dimensiones y media1; siempre y cuando se dispusiera de un modelo digital de superficie o del terreno. Dado que la disponibilidad de obtener de manera libre el MDS de las zonas de interés del proyecto, hoy en día es costoso2, se planteará la posibilidad de conjuntar, para el estudio del diseño de la red, de un modelo digital del terreno. Las actividades a desarrollar en el trabajo de esta tesis se describen en esta memoria y se enmarcan dentro de la investigación para la que se plantean los siguientes objetivos globales: 1. Establecer un modelo matemático del proceso de observación de una red topográfica, atendiendo a todos los factores que intervienen en el mismo y a su influencia sobre las estimaciones de las incógnitas que se obtienen como resultado del ajuste de las observaciones. 2. Desarrollar un sistema que permita optimizar una red topográfica en sus resultados, aplicando técnicas de diseño y simulación sobre el modelo anterior. 3. Presentar una formulación explícita y rigurosa de los parámetros que valoran la fiabilidad de una red topográfica y de sus relaciones con el diseño de la misma. El logro de este objetivo se basa, además de en la búsqueda y revisión de las fuentes, en una intensa labor de unificación de notaciones y de construcción de pasos intermedios en los desarrollos matemáticos. 4. Elaborar una visión conjunta de la influencia del diseño de una red, en los seis siguientes factores (precisiones a posteriori, fiabilidad de las observaciones, naturaleza y viabilidad de las mismas, instrumental y metodología de estacionamiento) como criterios de optimización, con la finalidad de enmarcar el tema concreto que aquí se aborda. 5. Elaborar y programar los algoritmos necesarios para poder desarrollar una aplicación que sea capaz de contemplar las variables planteadas en el apartado anterior en el problema del diseño y simulación de redes topográficas, contemplando el modelo digital de superficie. Podrían considerarse como objetivos secundarios, los siguientes apartados: Desarrollar los algoritmos necesarios para interrelacionar el modelo digital del terreno con los propios del diseño. Implementar en la aplicación informática la posibilidad de variación, por parte del usuario, de los criterios de cobertura de los parámetros (distribución normal o t de Student), así como los grados de fiabilidad de los mismos ABSTRACT The overall purpose of this work is the analysis of the techniques of design and optimization for geodetic networks, measured with conventional survey methods (not satellite), the development and implementation of a computational system capable to help on the definition of the most liable and accurate geometry, depending on the land orography where the network has to be located. First of all, a study of the methodology by least squares adjustment and propagation of variances will be held; then, subsequently, analyze its dependency of the geometry that the network will take. It will be essential to determine the independency of redundancy matrix (R) from the observations and its absolute dependency from the network geometry, as well as the influence of the diagonal terms of the R matrix (rii), redundancy numbers, in order to ensure maximum re liability of the network. It will also be analyzed first the behavior of redundancy numbers (rii) in surveying network design, then the variation of these values depending on the geometry with the analysis of its independency from the observations, and finally the different design levels depending on parameters and known data. It should be stated that network optimization, according to exposed criteria, is subject to the accessibility of the network points. In addition, common visibility among network points, which of them are connected with observations, has to be considered. All these situations depends essentially on the terrain relief and the natural or artificial obstacles that should exist. Therefore, it is necessary to include, at least, a digital terrain model (DTM), and better a digital surface model (DSM), not always available. Although design treatment is based on a bidimensional system, the possibility of incorporating a digital surface model (DSM) will be studied; this will allow evaluating the observations feasibility based on the terrain and the elements, both natural and artificial, which are located on it, when selecting network point locations. This system would provide, at first, an optimal design of a constrained network, considering both the internal reliability and the accuracy of its points (including the relief). This approach would amount to solving a “two and a half dimensional”3 design, if a digital surface model is available. As the availability of free DSM4 of the areas of interest of the project today is expensive, the possibility of combining a digital terrain model will arise. The activities to be developed on this PhD thesis are described in this document and are part of the research for which the following overall objectives are posed: 1. To establish a mathematical model for the process of observation of a survey network, considering all the factors involved and its influence on the estimates of the unknowns that are obtained as a result of the observations adjustment. 2. To develop a system to optimize a survey network results, applying design and simulation techniques on the previous model. 3. To present an explicit and rigorous formulation of parameters which assess the reliability of a survey network and its relations with the design. The achievement of this objective is based, besides on the search and review of sources, in an intense work of unification of notation and construction of intermediate steps in the mathematical developments. 4. To develop an overview of the influence on the network design of six major factors (posterior accuracy, observations reliability, viability of observations, instruments and station methodology) as optimization criteria, in order to define the subject approached on this document. 5. To elaborate and program the algorithms needed to develop an application software capable of considering the variables proposed in the previous section, on the problem of design and simulation of surveying networks, considering the digital surface model. It could be considered as secondary objectives, the following paragraphs: To develop the necessary algorithms to interrelate the digital terrain model with the design ones. To implement in the software application the possibility of variation of the coverage criteria parameters (normal distribution or Student t test) and therefore its degree of reliability.