788 resultados para Recursive logit
Resumo:
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.
Resumo:
Using a combination of density functional theory and recursive Green's functions techniques, we present a full description of a large scale sensor, accounting for disorder and different coverages. Here, we use this method to demonstrate the functionality of nitrogen-rich carbon nanotubes as ammonia sensors as an example. We show how the molecules one wishes to detect bind to the most relevant defects on the nanotube, describe how these interactions lead to changes in the electronic transport properties of each isolated defect, and demonstrate that there are significative resistance changes even in the presence of disorder, elucidating how a realistic nanosensor works.
Resumo:
Fontanari introduced [Phys. Rev. Lett. 91, 218101 (2003)] a model for studying Muller's ratchet phenomenon in growing asexual populations. They studied two situations, either including a death probability for each newborn or not, but were able to find analytical (recursive) expressions only in the no-decay case. In this Brief Report a branching process formalism is used to find recurrence equations that generalize the analytical results of the original paper besides confirming the interesting effects their simulations revealed.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables - possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Determining the season of death by means of the composition of the families of insects infesting carrion is rarely attempted in forensic studies and has never been statistically modelled. For this reason, a baseline-category logit model is proposed for predicting the season of death as a function of whether the area where the carcass was exposed is sunlit or shaded and of the relative abundance of particular families of carrion insects (Calliphoridae, Fanniidae, Sarcophagidae, and Formicidae). The field study was conducted using rodent carcasses (20-252 g) in an urban forest in southeastern Brazil. Four carcasses (2 in a sunlit and 2 in a shaded area) were placed simultaneously at the study site, twice during each season from August 2003 through June 2004. The feasibility of the model, measured in terms of overall accuracy, is 64 +/- 14%. It is likely the proposed model will assist forensic teams in predicting the season of death in tropical ecosystems, without the need of identifying the species of specimens or the remains of carrion insects.
Resumo:
Objectives: The aim of this study was to determine the insulin-delivery system and the attributes of insulin therapy that best meet patients` preferences, and to estimate patients` willingness-to-pay (WTP) for them. Methods: This was a cross-sectional discrete choice experiment (DCE) study involving 378 Canadian patients with type 1 or type 2 diabetes. Patients were asked to choose between two hypothetical insulin treatment options made up of different combinations of the attribute levels. Regression coefficients derived using conditional logit models were used to calculate patients` WTP. Stratification of the sample was performed to evaluate WTP by predefined subgroups. Results: A total of 274 patients successfully completed the survey. Overall, patients were willing to pay the most for better blood glucose control followed by weight gain. Surprisingly, route of insulin administration was the least important attribute overall. Segmented models indicated that insulin naive diabetics were willing to pay significantly more for both oral and inhaled short-acting insulin compared with insulin users. Surprisingly, type 1 diabetics were willing to pay $C11.53 for subcutaneous short-acting insulin, while type 2 diabetics were willing to pay $C47.23 to avoid subcutaneous short-acting insulin (p < .05). These findings support the hypothesis of a psychological barrier to initiating insulin therapy, but once that this barrier has been overcome, they accommodate and accept injectable therapy as a treatment option. Conclusions: By understanding and addressing patients` preferences for insulin therapy, diabetes educators can use this information to find an optimal treatment approach for each individual patient, which may ultimately lead to improved control, through improved compliance, and better diabetes outcomes.
Resumo:
Lamington National Park in Queensland, Australia is noted for its rainforest and is part of Australia’s fourteen World Heritage listed properties but no systematic study has been done of the importance of birds to its visitors. This study rectifies this situation. It is based on data from survey forms handed to visitors at an important site in this park and completed by visitors following their visit. This yielded 622 useable replies. These enabled us to establish the comparative importance of birds as an attraction to this site. Furthermore, logit regression is used to analyze and to identify factors that increase the likelihood of a visitor saying that birds are an important attraction. In addition, the relative importance to visitors of various attributes of birds at this site is established. These attributes include hearing birds, diversity of birds, seeing lots of birds, presence of rare birds, presence of brightly colored birds and physical contact with birds. Logit regression analysis is used to isolate independent variables that increase or decrease the likelihood that visitors find diversity of birds, brightly colored birds or physical contact with birds at this site to be important. For example, factors such as the level of education of visitors, their gender, knowledge of birds and conservation attitudes are statistically significant influences.
Resumo:
Lamington National Park in Queensland, Australia is noted for its rainforest and is part of the World Heritage listed property but prior to this work, no systematic study has been done of the importance of birds to its visitors. This study is based on data from survey forms handed to visitors at an important site in the park and completed by visitors following their visit. It yielded 622 useable responses. These enabled us to establish the comparative importance of birds as an attraction to this site for this sample of visitors. Furthermore, logit regression is used to target analysis and to identify factors that increase the likelihood of a visitor saying that birds are an important attraction. In addition, the relative importance to visitors of various attributes of birds at this site is established. These attributes include hearing birds, diversity of birds, seeing lots of birds, presence of rare birds, presence of brightly coloured birds and physical contact with birds. Logit regression analysis is used to isolate independent variables that increase or decrease the likelihood that visitors find diversity of birds, brightly coloured birds or physical contact with birds at this site to be important. For example, factors such as the level of education of visitors, their gender, knowledge of birds and conservation attitudes and statistically significant influences. As a result of the analysis potential conflicts between different types of park visitors in relation to human interaction with birds are identified. Some potential ecological implications of human interactions with birds are modelled and discussed, and their economic conservation and biodiversity consequences are considered