980 resultados para Recuento de Linfocito CD4
Resumo:
In the present study, we have investigated the functional profile of CD4 T cells from patients with common variable immunodeficiency (CVID), including production of cytokines and proliferation in response to bacteria and virus-derived antigens. We show that the functional impairment of CD4 T cells, including the reduced capacity to proliferate and to produce IFN-γ and IL-2, was restricted to bacteria-specific and not virus-specific CD4 T cells. High levels of endotoxins were found in the plasma of patients with CVID, suggesting that CD4 T cell dysfunction might be caused by bacterial translocation. Of note, endotoxemia was associated with significantly higher expression of programmed death 1 (PD-1) on CD4 T cells. The blockade of the PD-1-PD-L1/2 axis in vitro restored CD4 T cell proliferation capacity, thus indicating that PD-1 signaling negatively regulates CD4 T cell functions. Finally, we showed that intravenous immunoglobulin G (IVIG) treatment significantly reduced endotoxemia and the percentage of PD-1(+) CD4 T cells, and restored bacteria-specific CD4 T cell cytokine production and proliferation. In conclusion, the present study demonstrates that the CD4 T cell exhaustion and functional impairment observed in CVID patients is associated with bacterial translocation and that IVIG treatment resolves bacterial translocation and restores CD4 T cell functions.
Resumo:
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.
Resumo:
CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.
Resumo:
Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.
Resumo:
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la facultat de Medical Sciences de la Universitat de Bristol, Alemanya, entre 2011 i 2012. Aquest treball s'ha realitzat a la facultat de Medical Sciences de la Universitat de Bristol, al laboratori del Prof. Andrew Di cks,o ta la seva supe1visi6. Ei treball s'ha realitzat amb els seus col.laboradors, el Dr Richard Lee i Lauren Schew:tz. Objectiu: Els glucocorticoids (GCs) tenen diversos efectes sobre les cèl.lules T CD4+ per modular la resposta immune principalment mitjançant els seus efectes anti-proliferatius. Tot i això la dexametasona (Dex, glucocorticoid sintètic) també indueix la secreció de la citocina immunosupressora IL-10 . L'objectiu d'aquest treball ha estat comparar la capacitat dels glucocorticoids en modular la producció de citocines en cèl.lules T CD4+ en pacients uveítics sensibles (SS), i resistents (SR) a esteroids. Metodologia: Es van aïllar cèl• lules T CD4+ de pacients uveítics SS i SR. Es va induir la producció de cèl.lules T regulatories (Tregs) i mitjançant I'estimulació amb anti- CD3/CD28 en presència d'lL-2 i Després del cultiu es van analitzar els nivells d’expressió intracel•lular de les citocines IL-10, IL-4, IL-9, IL-17 i IFN-y per citometria de flux. D'altra banda, també es van separar cèl.lules T CD4t de pacients uveïtis segons I'expressió de CCR6 i es van polaritzar per obtenir els fenotips ThO i Th17 per estudiar I'efecte de Dex i ciclosporina (CsA) en aquests subtipus cel.lulars. Resultats: Les cèl.lules T CD4+ de pacients SR no van ser capaces de produir IL-10 en resposta al tractament amb Dex. Dex no va afectar els nivells d'expressió d'11-17, però va reduir els nivells de IL-4 i IFN-V. Els nivells d'lL-9 (marcador d'un subtipus cel.lular recentment descrit, Th9) v ise r sempre inferiors a 11%. En canvi, el traclament a amb CsA va reduir significativament els nivells d'lL-17 i IFN-y en cèl.lules Th17 i ThO. Conclusions: La Dex no és capaç d'induir cèl.lules Treg funcionalment supresores en pacients veiticsS R. Aquest fenòmen és Independent dels efectes en I'expressió d'altres citocines. Aquests resultats suggereixen que I'efecte de la Dex sobre la funció de cél.lules Treg és clau en el desenvolupament del fenotip SR en la uveïtis . D'altra banda, al llarg d'aquest temps he iniciat un nou projecte que ha donat lloc a un futur projecte de col elaboració. Resumidament, degut a que els nivells elevats de proteïna C-reactiva (CRP) són un factor de risc en la degeneració macular, malaltia inflamatòria crònica principal causa de ceguera en països industrialitzats, I'objectiu d'aquest altre treball ha estat iniciar un projecte per avaluar els efectes de les diferents isoformes de la CRP sobre la resposta inflamatòria d’epiteli pigmentari retinià.
Resumo:
Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.
Resumo:
The expression of interleukin 7 receptor alpha(high) (IL-7Ralpha(high)) discriminates between activated CD25(+)CD45RO(+)CD4(+) T cells [IL-7Ralpha(high) and forkhead box P3-negative (FoxP3(-))] and regulatory T cells (IL-7Ralpha(low) and FoxP3(+)). The IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population has been shown to be expanded in the blood and tissues of patients after kidney transplantation and to contain alloreactive T cells (activated T cells). In the present study, we analyzed the distribution of IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cells in the blood of 53 patients after liver transplantation. The IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population was significantly expanded (P < 0.0001) in stable transplant recipients versus healthy donors. However, the magnitude of the expansion was significantly higher (P < 0.0001) in liver transplant recipients with no hepatitis C virus (HCV) infection in comparison with those with a preexisting HCV infection. Interestingly, effective suppression of HCV viremia after antiviral therapy was associated with an increase in the IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population to levels comparable to those of liver transplant recipients not infected with HCV. The present results indicate that (1) the IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population is expanded after liver transplantation, (2) it is a valuable immunological marker for monitoring activated and potential alloreactive CD4 T cells in liver transplantation, and (3) a preexisting HCV infection negatively influences the expansion of this population in liver transplant recipients.
Resumo:
SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.
Resumo:
It is well established that T cell-deficient nude and SCID mice can be reconstituted by i.v. injection of small numbers of purified peripheral CD4+ T cells; however, the requirements for expansion of the transferred T cells in such systems are not clear. We show here that blood and lymphoid organs of MHC class II-deficient mice (which selectively lack mature CD4+ T cells) cannot be reconstituted by transfer of purified splenic CD4+ T cells, whereas TCRalpha-deficient mice (which lack both CD4+ and CD8+ mature T cells) are readily reconstituted. The failure of CD4+ T cell reconstitution in MHC class II-deficient mice was not due to the presence of CD8+ T cells, since similar results were obtained in TCRalpha-MHC class II double-deficient mice. Consistent with most previous studies CD4+ T cells in reconstituted TCRalpha-deficient mice had a diverse TCR Vbeta repertoire and were predominantly of an activated/memory (CD44high) phenotype. Collectively our data demonstrate that the expansion of peripheral CD4+ T cells in a T cell-deficient host is dependent upon interactions of the TCR with MHC class II.
Resumo:
The involvement of a variety of clonal selection processes during the development of T lymphocytes in the thymus has been well established. Less information, however, is available on how homeostatic mechanisms may regulate the generation and maturation of thymocytes. To investigate this question, mixed radiation bone marrow chimeras were established in which wild-type T cell precursors capable of full maturation were diluted with precursors deficient in maturation potential because of targeted mutations of the RAG1 or TCR-alpha genes. In chimeras in which the majority of thymocytes are blocked at the CD4- CD8- CD25+ stage (RAG1 deficient), and only a small proportion of T cell precursors are of wild-type origin, we observed no difference in the maturation of wild-type CD4- CD8- CD25+ cells to the CD4+ CD8+ stage as compared with control chimeras. Therefore, the number of cell divisions occurring during this transition is fixed and not subject to homeostatic regulation. In contrast, in mixed chimeras in which the majority of thymocytes are blocked at the CD4+ CD8+ stage (TCR-alpha deficient), an increased efficiency of development of wild-type mature CD8+ cells was observed. Surprisingly, the rate of generation of mature CD4+ thymocytes was not affected in these chimeras. Thus, the number of selectable CD8 lineage thymocytes apparently saturates the selection mechanism in normal mice while the development of CD4 lineage cells seems to be limited only by the expression of a suitable TCR. These data may open the way to the identification of homeostatic mechanisms regulating thymic output and CD4/CD8 lineage commitment, and the development of means to modulate it.
Resumo:
During their development, immature CD4+ CD8+ thymocytes become committed to either the CD4 or CD8 lineage. Subsequent complete maturation of CD4+ and CD8+ cells requires a molecular match of the expressed coreceptor and the MHC specificity of the TCR. The final size of the mature CD4+ and CD8+ thymic compartments is therefore determined by a combination of lineage commitment and TCR-mediated selection. In humans and mice, the relative size of CD4+ and CD8+ peripheral T cell compartments shows marked genetic variability. We show here that genetic variations in thymic lineage commitment, rather than TCR-mediated selection processes, are responsible for the distinct CD4/CD8 ratios observed in common inbred mouse strains. Genetic variations in the regulation of lineage commitment open new ways to analyze this process and to identify the molecules involved.
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.
Resumo:
The biochemical mechanisms controlling the diverse functional outcomes of human central memory (CM) and effector memory (EM) T-cell responses triggered through the T-cell receptor (TCR) remain poorly understood. We implemented reverse phase protein arrays to profile TCR signaling components in human CD8 and CD4 memory T-cell subsets isolated ex vivo. As compared with CD4 CM cells, EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c-Cbl, Syk, Fyn, and LAT. Moreover, in EM cells reduced expression of negative regulator c-Cbl correlates with expression of c-Cbl kinases (Syk and Fyn), PI3K, and LAT. Importantly, consistent with reduced expression of c-Cbl, EM cells display a lower functional threshold than CM cells. Increasing c-Cbl content of EM cells to the same level as that of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism depends primarily on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Our study reports c-Cbl as a critical regulator of the functional responses of memory T cell subsets and identifies for the first time in humans a mechanism controlling the functional heterogeneity of memory CD4 cells.