956 resultados para Rectangular patch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite-patching on cracked/weak metallic aircraft structures improves structural integrity. A Boron Epoxy patch employed to repair a cracked Aluminum sheet is modeled employing 3D Finite Element Method (FEM). SIFs extracted using ''displacement extrapolation'' are used to measure the repair effectiveness. Two issues viz., patch taper and symmetry have been looked into.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation of the fluid flow in the fully developed portion of a rectangular channel (Aspect Ratio of 2) with dimples applied to one wall at channel Reynolds numbers of 20,000, 30,000, and 40,000. The dimples are applied in a staggered-row, racetrack configuration. Results for three different dimple geometries are presented: a large dimple, small dimple, and double dimple. Heat transfer and aerodynamic results from preceding works are presented in Nusselt number and friction factor augmentation plots as determined experimentally. Using particle image velocimetry, the region near the dimple feature is studied in detail in the location of the entrainment and ejection of vortical packets into and out of the dimple; the downstream wake region behind each dimple is also studied to examine the effects of the local flow phenomenon that result in improved heat transfer in the areas of the channel wall not occupied by a feature. The focus of the paper is to examine the secondary flows in these dimpled channels in order to support the previously presented heat transfer trends. The flow visualization is also intended to improve the understanding of the flow disturbances in a dimpled channel; a better understanding of these effects would lead the development of more effective channel cooling designs. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar natural convection between two coaxial vertical rectangular cylinders is numerically studied in this work. The outer cylinder is connected with vertical rectangular inlet and outlet pipes. The inner cylinder dissipates volumetric heat. The fluid flow and heat transfer characteristics between the cylinders are analyzed in detail for various Grashof numbers. The heat transfer rates on the individual faces of the inner cylinder are reported. The bottom face of the inner cylinder is found to associate with much higher heat rates than those of the other faces. The average Nusselt number on bottom face is more than 2.5 times of the Nusselt number averaged on all the faces. At a given elevation, local Nusselt number on the inner cylinder faces increases towards cylinder edges. The effect of thermal condition of the walls of outer cylinder, inlet and outlet on the natural convection is analyzed. The thermal condition shows strong qualitative and quantitative impact on the fluid flow and heat transfer. The variation of induced flow rate, dimensionless maximum temperature and average Nusselt numbers with Grashof number is studied. Correlations for dimensionless buoyancy-induced mass flow rate and temperature maximum are presented. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents simulation and experimental studies on the characterization of ultra wideband antennas for imaging applications. Various configurations of antennas were simulated for their time and frequency domain characteristics with special emphasis on flat responses for group delay and gain versus frequency. Parametric studies reported here showed that locating the capacitive feed strip near the vertex of the triangle gave better response in these respects. An antenna with operating frequency from 2.9GHz to 4.1GHz was fabricated and measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An E-plane rectangular folded-waveguide slow-wave structure with metal grating on the broad wall of the waveguide along the direction of the electric field has been proposed and analyzed for the dispersion and interaction impedance characteristics through three dimensional electromagnetic modeling in CST Studio. The effects of the presence of grating on the bandwidth and interaction impedance are demonstrated.