932 resultados para Recreational vehicles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bicyclists are among the most vulnerable of road users, with high fatal crash rates. Although visibility aids have been widely advocated to help prevent bicycle-vehicle conflicts, to date no study has investigated, among crash-involved cyclists, the kind of visibility aids they were using at the time of the crash. This study undertook a detailed investigation of visibility factors involved in bicyclist-motor-vehicle crashes. We surveyed 184 bicyclists (predominantly from Australia via internet cycling forums) who had been involved in motor vehicle collisions regarding the perceived cause of the collision, ambient weather and general visibility, as well as the clothing and bicycle lights used by the bicyclist. Over a third of the crashes occurred in low light levels (dawn, dusk or night-time), which is disproportionate given that only a small proportion of bicyclists typically ride at these times. Importantly, 19% of these bicyclists reported not using bicycle lights at the time of the crash, and only 34% were wearing reflective clothing. Only two participants (of 184) nominated bicyclist visibility as the cause of the crash: 61% attributed the crash to driver inattention. These findings demonstrate that crash-involved bicyclists tend to under-rate and under-utilise visibility aids as a means of improving their safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A control allocation system implements a function that maps the desired control forces generated by the vehicle motion controller into the commands of the different actuators. In this article, a survey of control allocation methods for over-actuated underwater vehicles is presented. The methods are applicable for both surface vessels and underwater vehicles. The paper presents a survey of control allocation methods with focus on mathematical representation and solvability of thruster allocation problems. The paper is useful for university students and engineers who want to get an overview of state-of-the art control allocation methods as well as advance methods to solve more complex problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents a novel control strategy for trajectory tracking of underwater marine vehicles that are designed using port-Hamiltonian theory. A model for neutrally buoyant underwater vehicles is formulated as a PHS, and then the tracking controller is designed for the horizontal plane-surge, sway and yaw. The control design is done by formulating the error dynamics as a set-point regulation port-Hamiltonian control problem. The control design is formulated in two steps. In the first step, a static-feedback tracking controller is designed, and the second step integral action is added. The global asymptotic stability of the closed loop system is proved and the performance of the controller is illustrated using a model of an open-frame offshore underwater vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel control strategy for trajectory tracking of marine vehicles manoeuvring at low speed. The model of the marine vehicle is formulated as a Port-Hamiltonian system, and the tracking controller is designed using energy shaping and damping assignment. The controller guarantees global asymptotic stability and includes integral action for output variables with relative degree greater than one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.