805 resultados para Reconstructive dosimetry


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro di tesi nasce in seguito all’esperienza di tirocinio svolta presso l’Arcispedale Santa Maria Nuova di Reggio Emilia. Fulcro di questo lavoro è lo sviluppo di un sistema di pianificazione della dose per il trattamento dei pazienti sottoposti a Molecular Radionuclide Therapy (MRT). Presso tale struttura ospedaliera è già stato sviluppato uno strumento che si appoggia all’ambiente di lavoro Matlab per il calcolo dosimetrico. Tale programma è chiamato VoxelMed. Si tratta di uno strumento di calcolo che lavora al così detto voxel-level, tecnica di sviluppo recente che permette il calcolo della dose assorbita all’interno di un paziente in modo più dettagliato rispetto ai metodi di calcolo basati unicamente sulla stima media per organo, tipicamente impiegati in dosimetria tradizionale. Parte del lavoro di tesi consiste nell’implementare nuove modalità di calcolo ed aggiungere ulteriori accorgimenti all’attuale versione di VoxelMed. In VoxelMed è stata poi integrata ex-novo una componente di calcolo di misure radiobiologiche, in particolare della BED. La dose assorbita non è infatti un parametro sufficiente per valutare gli effetti della radiazione sui tessuti, a parità di tipo ed energia della radiazione gli effetti possono essere molto variabili. La BED è il parametro che tiene conto della risposta del tessuto sano o cancerogeno alla radiazione. Parte del lavoro è stato svolto sperimentalmente, tramite misure con fantocci acquisiti o preparati ad hoc. In particolare si sono utilizzati diverse tipologie di fantocci, per effettuare protocolli di calibrazione dei sistemi di acquisizione, misure di curve di effetto di volume parziale e test finali di verifica. Per un ulteriore verifica delle prestazioni di calcolo si sono effettuate misurazioni su un gruppo di pazienti e si sono confrontati i risultati con quelli ottenuti dal software maggiormente utilizzato nella pratica clinica, OLINDA/EXM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de maitrise présenté en vue de l’obtention du grade M. Sc. A. en génie biomédical option Génie clinique

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de maitrise présenté en vue de l’obtention du grade M. Sc. A. en génie biomédical option Génie clinique

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. In case of peripheral nerve injury, the first approach is primary neurorrhaphy, which is direct nerve repair with epineural microsutures of the two stumps. However, this is not feasible in case of stump retraction or in case of tissue loss (gap > 2 cm), where the main surgical options are autologous grafts, allogenic grafts, or nerve conduits. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable donor site morbidity and functional deficit. Fresh nerve allografts have therefore become a viable alternative option, but they require immunosuppression, which is often contraindicated. Acellular Nerve Allografts (ANA) represent a valid alternative, they do not need immunosuppression and appear to be safe and effective based on recent studies. The purpose of this study is to propose and develop an innovative method of nerve decellularization (Rizzoli method), conforming to cleanroom requirements in order to perform the direct tissue manipulation step and the nerve decellularization process within five hours, so as to accelerate the detachment of myelin and cellular debris, without detrimental effects on nerve architecture. In this study, the safety and the efficacy of the new method are evaluated in vitro and in vivo by histological, immunohistochemical, and histomorphometric studies in rabbits and humans. The new method is rapid, safe, and cheaper if compared with available commercial ANAs. The present study shows that the method, previously optimized in vitro and in vivo on animal model presented by our group, can be applied on human nerve samples. This work represents the first step in providing a novel, safe, and inexpensive tool for use by European tissue banks to democratize the use of nerve tissue transplantation for nerve injury reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil). A comparative study involving data from Punta Arenas - Chile (53.2º S), São Martinho da Serra (29.5º S), Padang - Indonesia (0.9ºS), Brussels - Belgium (50.9º N) and Kiyotake - Japan (31.9º N) from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively). The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of breast-conserving surgery for the local control of early breast cancer has been repeatedly evidenced. Although immediate reconstruction following breast-conserving surgery has been described, little information is available regarding surgical management in reoperative settings due to positive margins. We studied the influence of intraoperatively assessed and postoperatively controlled surgical margin status on the type of breast-conserving surgery and report our results regarding complications in a reoperative breast reconstruction scenario. All patients were seen by a multidisciplinary team who recommended breast-conserving surgery. According to the breast volume, ptosis and tumor size/location, the patients were also evaluated by a plastic surgeon, who recommended reconstruction with the appropriate technique. Intraoperative assessment of surgical margins was determined by histological examination of frozen sections. The mean follow-up time was 48months. Two hundred and eighteen patients (88.5 per cent ) underwent breast-conserving surgery and immediate reconstruction. Twelve (5.5 per cent ) patients had a positive tumor margin after review of the permanent section. All patients underwent re-exploration. In 1.3 per cent , a second reconstructive technique was indicated and in 2.2 per cent a skin-sparing mastectomy with total reconstruction was performed. Our findings support the important role of the intraoperative assessment of surgical margins and its interference in the selection of reconstruction techniques and negative margins; however, it will not guarantee complete excision of the tumor. Success depends on coordinated planning with the oncologic surgeon and careful intraoperative management

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionizing radiation OR) imposes risks to human health and the environment. IR at low doses and low (lose rates has the potency to initiate carcinogenesis. Genotoxic environmental agents such as IR trigger a cascade of signal transduction pathways for cellular protection. In this study, using cDNA microarray technique, we monitored the gene expression profiles in lymphocytes derived from radiation-ex posed individuals (radiation workers). Physical dosimetry records on these patients indicated that the absorbed dose ranged from 0.696 to 39.088 mSv. Gene expression analysis revealed statistically significant transcriptional changes in a total of 78 genes (21 up-regulated and 57 clown-regulated) involved in several biological processes such as ubiquitin cycle (UHRF2 and PIAS1), DNA repair (LIG3, XPA, ERCC5, RAD52, DCLRE1C), cell cycle regulation/proliferation (RHOA, CABLES2, TGFB2, IL16), and stress response (GSTP1, PPP2R5A, DUSP22). Some of the genes that showed altered expression profiles in this study call be used as biomarkers for monitoring the chronic low level exposure in humans. Additionally, alterations in gene expression patterns observed in chronically exposed radiation workers reinforces the need for defining the effective radiation dose that causes immediate genetic damage as well as the long-term effects on genomic instability, including cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Data: Photodynamic therapy (PDT) involves the photoinduction of cytotoxicity using a photosensitizer agent, a light source of the proper wavelength, and the presence of molecular oxygen. A model for tissue response to PDT based on the photodynamic threshold dose (Dth) has been widely used. In this model cells exposed to doses below Dth survive while at doses above the Dth necrosis takes place. Objective: This study evaluated the light Dth values by using two different methods of determination. One model concerns the depth of necrosis and the other the width of superficial necrosis. Materials and Methods: Using normal rat liver we investigated the depth and width of necrosis induced by PDT when a laser with a gaussian intensity profile is used. Different light doses, photosensitizers (Photogem, Photofrin, Photosan, Foscan, Photodithazine, and Radachlorin), and concentrations were employed. Each experiment was performed on five animals and the average and standard deviations were calculated. Results: A simple depth and width of necrosis model analysis allows us to determine the threshold dose by measuring both depth and surface data. Comparison shows that both measurements provide the same value within the degree of experimental error. Conclusion: This work demonstrates that by knowing the extent of the superficial necrotic area of a target tissue irradiated by a gaussian light beam, it is possible to estimate the threshold dose. This technique may find application where the determination of Dth must be done without cutting the tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem (R)) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm(2)) at a constant fluence rate of 250 mW/cm(2) and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (psi) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in psi and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.