952 resultados para Recombination and trapping
Resumo:
V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein–DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.
Resumo:
Rad51 is crucial not only in homologous recombination and recombinational repair but also in normal cellular growth. To address the role of Rad51 in normal cell growth we investigated morphological changes of cells after overexpression of wild-type and a dominant negative form of Rad51 in fission yeast. Rhp51, a Rad51 homolog in Schizosaccharomyces pombe, has a highly conserved ATP-binding motif. Rhp51 K155A, which has a single substitution in this motif, failed to rescue hypersensitivity of a rhp51Δ mutant to methyl methanesulfonate (MMS) and UV, whereas it binds normally to Rhp51 and Rad22, a Rad52 homolog. Two distinct cellular phenotypes were observed when Rhp51 or Rhp51 K155A was overexpressed in normal cells. Overexpression of Rhp51 caused lethality in the absence of DNA-damaging agents, with acquisition of a cell cycle mutant phenotype and accumulation of a 1C DNA population. On the other hand, overexpression of Rhp51 K155A led to a delay in G2 with decondensed nuclei, which resembled the phenotype of rhp51Δ. The latter also exhibited MMS and UV sensitivity, indicating that Rhp51 K155A has a dominant negative effect. These results suggest an association between DNA replication and Rad51 function.
Resumo:
Copy-choice RNA recombination occurs during viral RNA synthesis when the viral transcription complex switches templates. We demonstrate that RNA-dependent RNA polymerase from bovine viral diarrhea virus and the replicases from three plant-infecting RNA viruses can produce easily detectable recombination products in vitro by switching templates during elongative RNA synthesis. Template sequence and/or structure, and NTP availability affected the frequency of template switch by the transcription complex. Our results provide biochemical support for copy-choice recombination and establish assays for mechanistic analyses of intermolecular RNA recombination in vitro.
Resumo:
Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.
Resumo:
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4–8 h) to UV radiation (10–30 J/m2). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Resumo:
Modification of damaged replication forks is emerging as a crucial factor for efficient chromosomal duplication and the avoidance of genetic instability. The RecG helicase of Escherichia coli, which is involved in recombination and DNA repair, has been postulated to act on stalled replication forks to promote replication restart via the formation of a four-stranded (Holliday) junction. Here we show that RecG can actively unwind the leading and lagging strand arms of model replication fork structures in vitro. Unwinding is achieved in each case by simultaneous interaction with and translocation along both the leading and lagging strand templates at a fork. Disruption of either of these interactions dramatically inhibits unwinding of the opposing duplex arm. Thus, RecG translocates simultaneously along two DNA strands, one with 5′-3′ and the other with 3′-5′ polarity. The unwinding of both nascent strands at a damaged fork, and their subsequent annealing to form a Holliday junction, may explain the ability of RecG to promote replication restart. Moreover, the preferential binding of partial forks lacking a leading strand suggests that RecG may have the ability to target stalled replication intermediates in vivo in which lagging strand synthesis has continued beyond the leading strand.
Resumo:
The RAD52 epistasis group genes are involved in homologous DNA recombination, and their primary structures are conserved from yeast to humans. Although biochemical studies have suggested that the fundamental mechanism of homologous DNA recombination is conserved from yeast to mammals, recent studies of vertebrate cells deficient in genes of the RAD52 epistasis group reveal that the role of each protein is not necessarily the same as that of the corresponding yeast gene product. This review addresses the roles and mechanisms of homologous recombination-mediated repair with a special emphasis on differences between yeast and vertebrate cells.
Resumo:
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies—chimeric nucleases and triplex-forming oligonucleotides—for stimulating recombination in cells.
Resumo:
The RuvC protein of Escherichia coli catalyzes the resolution of recombination intermediates during genetic recombination and the recombinational repair of damaged DNA. Resolution involves specific recognition of the Holliday structure to form a complex that exhibits twofold symmetry with the DNA in an open configuration. Cleavage occurs when strands of like polarity are nicked at the sequence 5'-WTT decreases S-3' (where W is A or T and S is G or C). To determine whether the cleavage site needs to be located at, or close to, the point at which DNA strands exchange partners, Holliday structures were constructed with the junction points at defined sites within this sequence. We found that the efficiency of resolution was optimal when the cleavage site was coincident with the position of DNA strand exchange. In these studies, junction targeting was achieved by incorporating uncharged methyl phosphonates into the DNA backbone, providing further evidence for the importance of charge-charge repulsions in determining DNA structure.
Resumo:
Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.
Resumo:
Gene disruptions and deletions of up to 20kb have been generated by homologous recombination with appropriate targeting vectors in murine embryonic stem (ES) cells. Because we could not obtain a deletion of about 200 kb in the mouse amyloid precursor protein gene by the classical technique, we employed strategies involving the insertion of loxP sites upstream and downstream of the region to be deleted by homologous recombination and elicited excision of the loxP-flanked region by introduction of a Cre expression vector into the ES cells. In the first approach, the loxP sequences were inserted in two successive steps and after each step, ES cell clones were isolated and characterized. Deletion of the loxP-flanked sequence was accomplished by introducing the cre gene in a third step. In the second approach, ES cells containing the upstream loxP cassette were electroporated simultaneously with the downstream loxP targeting vector and the Cre expression plasmid. ES cells were obtained that gave rise to chimeric mice capable of germ-line transmission of the deleted amyloid precursor protein allele.
Resumo:
A family of proteins involved in cell cycle progression, DNA recombination, and the detection of DNA damage has been recently identified. One of the members of this family, human ATM, is defective in the cells of patients with ataxia telangiectasia and is involved in detection and response of cells to damaged DNA. Other members include Mei-41 (Drosophila melanogaster), Mec1p (Saccharomyces cerevisiae), and Rad3 (Schizosaccharomyces pombe), which are required for the S and G2/M checkpoints, as well as FRAP (Homo sapiens) and Torl/2p (S. cerevisiae), which are involved in a rapamycin-sensitive pathway leading to G1 cell cycle progression. We report here the cloning of a human cDNA encoding a protein with significant homology to members of this family. Three overlapping clones isolated from a Jurkat T-cell cDNA library revealed a 7.9-kb open reading frame encoding a protein that we have named FRP1 (FRAP-related protein) with 2644 amino acids and a predicted molecular mass of 301 kDa. Using fluorescence in situ hybridization and a full-length cDNA FRP1 clone, the FRP1 gene has been mapped to the chromosomal locus 3q22-q24. FRP1 is most closely related to three of the PIK-related kinase family members involved in checkpoint function--Mei-41, Mec1p, and Rad3--and as such may be the functional human counterpart of these proteins.
Resumo:
The presumed advantages of genetic recombinations are difficult to demonstrate directly. To investigate the effects of recombination and background heterozygosity on competitive ability, we have performed serial-transfer competition experiments between isogenic sexual and asexual strains of the yeast Saccharomyces cerevisiae. The members of these diploid pairs of strains differed only in being heterozygous (sexual) or homozygous (asexual) at the mating type or MAT locus. Competing pairs had either a completely homozygous or a heterozygous genetic background, the latter being heterozygous at many different loci throughout the genome. A round of meiotic recombination (automixis) conferred a large and statistically significant enhancement of competitive ability on sexual strains with a heterozygous genetic background. By contrast, in homozygous background competitions, meiosis decreased the sexual strains' initial relative competitive ability. In all cases, however, the sexual strains outcompeted their isogenic asexual counterparts, whether meiotic recombination had occurred or not. In some genetic backgrounds, this was due in part to an overdominance effect on competitive advantage of heterozygosity at the MAT locus. The advantage of the sexual strains also increased significantly during the course of the homozygous background competitions, particularly when meiosis had occurred. This latter effect either did not occur or was very weak in heterozygous background competitions. Overall, sexual strains with heterozygous genetic backgrounds had a significantly higher initial relative competitive ability than those with homozygous backgrounds. The advantage of mating type heterozygosity in this organism extends far beyond the ability to recombine meiotically.
Resumo:
The majority of translocations involving BCL2 are very narrowly targeted to three breakpoint clusters evenly spaced over a 100-bp region of the gene's terminal exon. We have recently shown that the immediate upstream boundary of this major breakpoint region (mbr) is a specific recognition site for single-strand DNA (ssDNA) binding proteins on the sense and antisense strands. The downstream flank of the mbr is a helicase binding site. In this report we demonstrate that the helicase and ssDNA binding proteins show reciprocal changes in binding activity over the cell cycle. The helicase is maximally active in G1 and early S phases; the ssDNA binding proteins are maximally active in late S and G2/M phases. An inhibitor of helicase binding appears in late S and G2/M. Finally, at least one component of the helicase binding complex is the Ku antigen. Thus, a protein with helicase activity implicated in repair of double-strand breaks, variable (diversity) joining recombination, and, potentially, cell-cycle regulation is targeted to the BCL2 mbr.
Resumo:
The products of the recB and recC genes are necessary for conjugal recombination and for repair of chromosomal double-chain breaks in Escherichia coli. The recD gene product combines with the RecB and RecC proteins to comprise RecBCD enzyme but is required for neither recombination nor repair. On the contrary, RecBCD enzyme is an exonuclease that inhibits recombination by destroying linear DNA. The RecD ejection model proposes that RecBCD enzyme enters a DNA duplex at a double-chain end and travels destructively until it encounters the recombination hot spot sequence chi. Chi then alters the RecBCD enzyme by weakening the affinity of the RecD subunit for the RecBC heterodimer. With the loss of the RecD subunit, the resulting protein, RecBC(D-), becomes deficient for exonuclease activity and proficient as a recombinagenic helicase. To test the model, genetic crosses between lambda phage were conducted in cells containing chi on a nonhomologous plasmid. Upon delivering a double-chain break to the plasmid, lambda recombined as if the cells had become recD mutants. The ability of chi to alter lambda recombination in trans was reversed by overproducing the RecD subunit. These results indicate that chi can influence a recombination act without directly participating in it.