971 resultados para Reading (Primary)
Resumo:
Cladistic analyses begin with an assessment of variation for a group of organisms and the subsequent representation of that variation as a data matrix. The step of converting observed organismal variation into a data matrix has been considered subjective, contentious, under-investigated, imprecise, unquantifiable, intuitive, as a black-box, and at the same time as ultimately the most influential phase of any cladistic analysis (Pimentel and Riggins, 1987; Bryant, 1989; Pogue and Mickevich, 1990; de Pinna, 1991; Stevens, 1991; Bateman et al., 1992; Smith, 1994; Pleijel, 1995; Wilkinson, 1995; Patterson and Johnson, 1997). Despite the concerns of these authors, primary homology assessment is often perceived as reproducible. In a recent paper, Hawkins et al. (1997) reiterated two points made by a number of these authors: that different interpretations of characters and coding are possible and that different workers will perceive and define characters in different ways. One reviewer challenged us: did we really think that two people working on the same group would come up with different data sets? The conflicting views regarding the reproducibility of the cladistic character matrix provoke a number of questions. Do the majority of workers consistently follow the same guidelines? Has the theoretical framework informing primary homology assessment been adequately explored? The objective of this study is to classify approaches to primary homology assessment, and to quantify the extent to which different approaches are found in the literature by examining variation in the way characters are defined and coded in a data matrix.
Resumo:
Background and Objectives Low self-esteem (LSE) is associated with psychiatric disorder, and is distressing and debilitating in its own right. Hence, it is frequent target for treatment in cognitive behavioural interventions, yet it has rarely been the primary focus for intervention. This paper reports on a preliminary randomized controlled trial of cognitive behaviour therapy (CBT) for LSE using Fennell’s (1997) cognitive conceptualisation and transdiagnostic treatment approach ( [Fennell, 1997] and [Fennell, 1999]). Methods Twenty-two participants were randomly allocated to either immediate treatment (IT) (n = 11) or to a waitlist condition (WL) (n = 11). Treatment consisted of 10 sessions of individual CBT accompanied by workbooks. Participants allocated to the WL condition received the CBT intervention once the waitlist period was completed and all participants were followed up 11 weeks after completing CBT. Results The IT group showed significantly better functioning than the WL group on measures of LSE, overall functioning and depression and had fewer psychiatric diagnoses at the end of treatment. The WL group showed the same pattern of response to CBT as the group who had received CBT immediately. All treatment gains were maintained at follow-up assessment. Limitations The sample size is small and consists mainly of women with a high level of educational attainment and the follow-up period was relatively short. Conclusions These preliminary findings suggest that a focused, brief CBT intervention can be effective in treating LSE and associated symptoms and diagnoses in a clinically representative group of individuals with a range of different and co-morbid disorders.
Resumo:
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).
Resumo:
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, > 10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.
Resumo:
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Resumo:
Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.
Resumo:
Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Resumo:
An alteration of species composition in temperate forests – both managed and natural - is one of the expected effects of environmental change. Present forest tree species ranges will be altered by changing environmental conditions. By a combination of continuous and destructive sampling, we compared biomass stocks and annual NPP in naturally regenerated stands of Norway spruce and European beech. We purposely selected a site where future environmental conditions are predicted to favour beech over presently dominant spruce. We found no difference in overall productivity, but biomass allocation differed significantly between the two species. Beech allocated more assimilates to stem and roots than spruce. There was no significant difference between the species in NPP of the fast turnover biomass pool comprising foliage and fine roots. Maximum height growth occurred about a month earlier than in spruce, potentially changing the timing of carbon (C) flow into the soil pools. We show that the replacement of spruce by beech will result in changes in forest biomass allocation and in alterations of belowground C cycle. Such changes will affect forest ecosystem function by modifying the magnitude and timing of certain C fluxes, but also by potentially changing the species composition of forest biota dependent on them.
Resumo:
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
Resumo:
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
This article presents findings of a larger single-country comparative study which set out to better understand primary school teachers’ mathematics education-related beliefs in Thailand. By combining the interview and observation data collected in the initial stage of this study with data gathered from the relevant literature, the 8-belief / 22-item ‘Thai Teachers’ Mathematics Education-related Beliefs’ (TTMEB) Scale was developed. The results of the Mann-Whitney U Test showed that Thai teachers in the two examined socio-economic regions espouse statistically different beliefs concerning the source and stability of mathematical knowledge, as well as classroom authority. Further, these three beliefs are found to be significantly and positively correlated.
Resumo:
In this paper we consider the structure of dynamically evolving networks modelling information and activity moving across a large set of vertices. We adopt the communicability concept that generalizes that of centrality which is defined for static networks. We define the primary network structure within the whole as comprising of the most influential vertices (both as senders and receivers of dynamically sequenced activity). We present a methodology based on successive vertex knockouts, up to a very small fraction of the whole primary network,that can characterize the nature of the primary network as being either relatively robust and lattice-like (with redundancies built in) or relatively fragile and tree-like (with sensitivities and few redundancies). We apply these ideas to the analysis of evolving networks derived from fMRI scans of resting human brains. We show that the estimation of performance parameters via the structure tests of the corresponding primary networks is subject to less variability than that observed across a very large population of such scans. Hence the differences within the population are significant.
Resumo:
In our seminal work, we reported how the biomaterial Parylene-C has the unique ability to coerce neurons and glial cells to migrate to and then grow in straight lines along serum coated rectangular parylene-C structures mounted on an oxidised silicon substrate. In this brief communication, we report how astrocyte cell bodies, from the dissociated postnatal rat hippocampus, can now to be successfully localised on an ultra-thin 13nm layer of parylene-C mounted on oxidised silicon (Figure 1). What is extremely interesting about this finding is that the astrocyte processes extended mainly in horizontal and vertical directions from the cell body thus creating a regular lattice network of individual cells. In addition, they comfortably extended a 50μm gap (equivalent to ~ 10 cell body diameters) to connect to adjacent astrocytes on neighbouring Parylene-C structures. This was found to occur repeatedly on circular geometries of 20μm diameter. In comparison to our previous work [1], we have decreased the thickness of the parylene-C structures by a factor of 10, to allow such technology to be able to be utilised for passive electrode design that requires extremely thin structures such as these. Thus, being able to culture astrocytes in regular lattice networks will pave the way for precise monitoring and stimulation of such ensembles via multi-electrode arrays, allowing a closer insight into their dynamic behaviour and their network properties.