967 resultados para Reaction diffusion equations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyze the dynamics of a reaction-diffusion equation with homogeneous Neumann boundary conditions in a dumbbell domain. We provide an appropriate functional setting to treat this problem and, as a first step, we show in this paper the continuity of the set of equilibria and of its linear unstable manifolds. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reaction-diffusion equation with variable diffusivity and non-linear flux boundary condition is considered. The goal is to give sufficient conditions on the diffusivity function for nonexistence and also for existence of nonconstant stable stationary solutions. Applications are given for the main result of nonexistence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present experiments on reactive front propagation in a two-dimensional (2D) vortex chain flow (both time-independent and time-periodic) and a 2D spatially disordered (time-independent) vortex-dominated flow. The flows are generated using magnetohydrodynamic forcing techniques, and the fronts are produced using the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical reaction. In both of these flows, front propagation is dominated by the presence of burning invariant manifolds (BIMs) that act as barriers, similar to invariant manifolds that dominate the transport of passive impurities. Convergence of the fronts onto these BIMs is shown experimentally for all of the flows studied. The BIMs are also shown to collapse onto the invariant manifolds for passive transport in the limit of large flow velocities. For the disordered flow, the measured BIMs are compared to those predicted using a measured velocity field and a three-dimensional set of ordinary differential equations that describe the dynamics of front propagation in advection-reaction-diffusion systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiesel is fast becoming one of the key transport fuels as the world endeavours to reduce its carbon footprint and find viable alternatives to oil derived fuels. Research in the field is currently focusing on more efficient ways to produce biodiesel, with the most promising avenue of research looking into the use of heterogeneous catalysis. This article presents a framework for kinetic reaction and diffusive transport modelling of the heterogeneously catalysed transesterification of triglycerides into fatty acid methyl esters (FAMEs), unveiled by a model system of tributyrin transesterification in the presence of MgO catalysts. In particular, the paper makes recommendations on multicomponent diffusion calculations such as the diffusion coefficients and molar fluxes from infinite dilution diffusion coefficients using the Wilke and Chang correlation, intrinsic reaction kinetic studies using the Eley-Rideal kinetic mechanism with methanol adsorption as the rate determining steps and multiscale reaction-diffusion process simulation between catalytic porous and bulk reactor scales. © 2013 The Royal Society of Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).