863 resultados para Random equivalent availability
Resumo:
To determine whether human X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome (IPEX; MIM 304930) is the genetic equivalent of the scurfy (sf) mouse, we sequenced the human ortholog (FOXP3) of the gene mutated in scurfy mice (Foxp3), in IPEX patients. We found four non-polymorphic mutations. Each mutation affects the forkhead/winged-helix domain of the scurfin protein, indicating that the mutations may disrupt critical DNA interactions.
Resumo:
An equivalent unit cell waveguide approach (WGA) is described to study the behavior of a multilayer reflect array of variable-size patches/dipoles, The approach considers normal incidence of a plane wave on an infinite periodic array of identical radiating elements and introduces an equivalent unit cell waveguide to obtain the reflection coefficient. A field matching technique and method of moments (MoM) is used to determine fields in different layers of the equivalent waveguide. Good agreements for the phase of the reflection coefficient between the proposed model and those published in selected literatures are obtained. (C) 2002 Wiley Periodicals, Inc.
Resumo:
We tested the hypothesis that tree species in a subtropical rain forest in south-east Queensland are ecologically equivalent and therefore have identical environmental requirements for their regeneration. We assessed the evidence that juveniles of species differed in their distributions in treefall gap microsites and along gradients of light availability, soil pH, soil PO4-P availability and soil NO3-N availability. Pairwise comparisons were made on a subset of the common species selected on the basis that they showed a relatively high level of positive association, and would therefore, a priori, be expected to have similar regeneration requirements. Detailed comparisons between the species failed to demonstrate evidence for species differentiation with respect to their tolerance of the disturbance associated with gap microsites or to the gradient of NO3-N availability. However, species differed markedly in their distributions along the soil pH gradient and along the gradients of light availability and soil PO4-P availability. The overall level of ecological differentiation between the species is high: seven out of the 10 possible species pairings showed evidence for ecological differentiation. Such niche differentiation amongst the juveniles of tree species may play an important role in maintaining the species richness of rain-forest communities.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
Resumo:
The composition of an open-forest lizard assemblage in eastern Australia was examined before and after a low-intensity controlled fire and concurrently compared with that in an adjoining unburnt area. The effect of fire on the available structural environment and the habitat used by two focal species, Carlia vivax and Lygisaurus foliorum, was also examined. Lizard species richness was unaffected by the controlled burn as was the abundance of most species. C. vivax was the only species to display a significant reduction in abundance after fire. While the low-intensity fire resulted in significant changes to the available structural environment, there were no compensatory shifts in the habitat preferences of either C. vivax or L. foliorum. The reduction in abundance of C. vivax was congruent with this species' avoidance of burnt areas. C. vivax displayed a non-random preference for ground cover and litter cover, which were reduced in burnt areas. Changes in the availability of preferred structural habitat features are likely to contribute to changes in the abundance of some lizard species. Therefore, even low-intensity disturbances can have an impact on lizard assemblages if critical habitat features are lost or become limiting.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
The last decade has seen spirited debates about how resource availability affect the intensity of competition. This paper examines the effect that a dominant introduced species, Carrichtera annua, has upon the winter annual community in the arid chenopod shrublands of South Australia. Manipulative field experiments were conducted to assess plant community response to changing below-ground resource levels and to the manipulation of the density of C. annua. Changes in the density of C. annua had little effect on the abundance of all other species in the guild. Nutrient addition produced an increase in the biomass of the most abundant native species, Crassula colorata. An analysis of the root distribution of the main species suggested that the areas of soil resource capture of C. annua and C. colorata are largely segregated. Our results suggest that intraspecific competition may be stronger than interspecific competition, controlling the species responses to increased resource availability. The results are consistent with a two-phase resource dynamics systems, with pulses of high resource availability triggering growth, followed by pulses of stress. Smaller plants were nutrient limited under natural field conditions, suggesting that stress experienced during long interpulse phases may override competitive effects after short pulse phases. The observed differences in root system structure will determine when plants of a different species are experiencing a pulse or an interpulse phase. We suggest that the limitations to plant recruitment and growth are the product of a complex interplay between the length and intensity of the pulse of resource availability, the duration and severity of the interpulse periods, and biological characters of the species.
Resumo:
Habitat choice by brush-tailed rock-wallabies (Petrogale penicillata) in south-east Queensland was investigated by comparing the attributes of the nocturnal foraging locations that they selected with those of random locations within a radius of 50 m. Brush-tailed rock-wallabies were shown to select foraging locations on the basis of forage quality and/or their ability to see predators, rather than protection from predators amongst vegetation that could conceal them. Habitat choice may have been affected by limited food availability, as this study was conducted in the winter dry season. The attributes of foraging locations that brush- tailed rock-wallabies perceived as increasing their predation risk were assessed by recording the proportion of time that brush- tailed rock-wallabies spent vigilant while foraging. To measure vigilance, focal animals were observed with a night- vision scope for two minutes and the proportions of time spent vigilant and feeding were recorded. No measured feature of foraging locations was related to higher vigilance levels, suggesting that brush- tailed rock-wallabies did not alter their vigilance whether sheltered amongst grass tussocks or in open habitat, or whether feeding on good quality or poorer quality vegetation. Vigilance levels significantly declined as overnight temperatures decreased, which may have resulted from higher energy requirements of brush- tailed rock-wallabies during winter. The only factors that were found to significantly increase vigilance levels were high winds and moonlit nights. On bright nights, brush- tailed rock-wallabies were very unsettled and during high winds they often did not emerge to feed. More information is needed about how macropods detect predators at night before the effects of wind and light intensity upon vigilance can be fully understood.
Resumo:
Evidence-based practice (EBP) requires clinicians to access, appraise and integrate research literature with clinical experience and clients' perspectives. Currently, little is known about occupational therapists' attitudes to EBP, their perception of implementation barriers or their educational needs. A questionnaire reflecting these issues was sent to a proportionate random sample of 1491 members of the national professional occupational therapy association, OT AUSTRALIA. The questionnaire was completed by 649 (44%) participants. Occupational therapists were positive about EBP with most (96%) agreeing that EBP is important to occupational therapy. Although 56% used research to make clinical decisions, more relied on clinical experience (96%), information from continuing education (82%) and colleagues (80%). Lack of time, evidence and skills were identified as the main barriers to the implementation of EBP. Over half (52%) expressed strong interest in EBP skills training, and most (80%) indicated an interest in the availability of brief summaries of evidence. Targeted educational initiatives, resources and systems are needed to support EBP in occupational therapy.
Resumo:
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.