972 resultados para Radial basis functions
Resumo:
This paper deals with the selection of centres for radial basis function (RBF) networks. A novel mean-tracking clustering algorithm is described as a way in which centers can be chosen based on a batch of collected data. A direct comparison is made between the mean-tracking algorithm and k-means clustering and it is shown how mean-tracking clustering is significantly better in terms of achieving an RBF network which performs accurate function modelling.
Resumo:
In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.
Resumo:
Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.
Resumo:
We present angular basis functions for the Schrödinger equation of two-electron systems in hyperspherical coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions, obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamiltonian for all values of the hyperspherical radius. The method is applied to the determination of the 1S e energy levels of the Li + and we show that the precision can be improved in a systematic and controllable way. ©2000 The American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, são propostas metodologias para otimização do parâmetro de forma local c do método RPIM (Radial Point Interpolation Method). Com as técnicas apresentadas, é possível reduzir problemas com inversão de matrizes comuns em métodos sem malha e, também, garantir um maior grau de liberdade e precisão para a utilização da técnica, já que se torna possível uma definição semi-automática dos fatores de forma mais adequados para cada domínio de suporte. Além disso, é apresentado um algoritmo baseado no Line Sweep para a geração eficiente dos domínios de suporte.
Resumo:
Utilizou-se o método seqüencial Monte Carlo / Mecânica Quântica para obterem-se os desvios de solvatocromismo e os momentos de dipolo dos sistemas de moléculas orgânicas: Uracil em meio aquoso, -Caroteno em Ácido Oléico, Ácido Ricinoléico em metanol e em Etanol e Ácido Oléico em metanol e em Etanol. As otimizações das geometrias e as distribuições de cargas foram obtidas através da Teoria do Funcional Densidade com o funcional B3LYP e os conjuntos de funções de base 6-31G(d) para todas as moléculas exceto para a água e Uracil, as quais, foram utilizadas o conjunto de funções de base 6-311++G(d,p). No tratamento clássico, Monte Carlo, aplicou-se o algoritmo Metropólis através do programa DICE. A separação de configurações estatisticamente relevantes para os cálculos das propriedades médias foi implementada com a utilização da função de auto-correlação calculada para cada sistema. A função de distribuição radial dos líquidos moleculares foi utilizada para a separação da primeira camada de solvatação, a qual, estabelece a principal interação entre soluto-solvente. As configurações relevantes da primeira camada de solvatação de cada sistema foram submetidas a cálculos quânticos a nível semi-empírico com o método ZINDO/S-CI. Os espectros de absorção foram obtidos para os solutos em fase gasosa e para os sistemas de líquidos moleculares comentados. Os momentos de dipolo elétrico dos mesmos também foram obtidos. Todas as bandas dos espectros de absorção dos sistemas tiveram um desvio para o azul, exceto a segunda banda do sistema de Beta-Caroteno em Ácido Oléico que apresentou um desvio para o vermelho. Os resultados encontrados apresentam-se em excelente concordância com os valores experimentais encontrados na literatura. Todos os sistemas tiveram aumento no momento de dipolo elétrico devido às moléculas dos solventes serem moléculas polares. Os sistemas de ácidos graxos em álcoois apresentaram resultados muito semelhantes, ou seja, os ácidos graxos mencionados possuem comportamentos espectroscópicos semelhantes submetidos aos mesmos solventes. As simulações através do método seqüencial Monte Carlo / Mecânica Quântica estudadas demonstraram que a metodologia é eficaz para a obtenção das propriedades espectroscópicas dos líquidos moleculares analisados.
Resumo:
Este trabalho consiste em realizar a modelagem, via elementos finitos (EF) 2,5D, do efeito da topografia do terreno sobre dados obtidos com o método eletromagnético a multi-frequência (EMMF). Este método usa como fonte uma grande espira quadrada de corrente elétrica com centenas de metros de lado, e como receptores, bobinas posicionadas na horizontal em alinhamento com o transmissor. A subsuperfície é representada por heterogeneidades bidimensionais imersas em um meio horizontalmente estratificado. A formulação, partindo das equações de Maxwell, é desenvolvida a partir da separação do campo eletromagnético em primário (campos no hospedeiro multi-estratificado) e secundário (diferença entre o campo total e o primário). O domínio discretizado é descrito por uma malha não estruturada, com elementos triangulares. Para calcular as componentes derivadas da solução de elementos finitos, em um determinado nó da malha, foi usada a média aritmética das derivadas das funções bases de EF em torno daquele nó. O código de modelagem construído permite quantificar e analisar como os gradientes topográficos influenciam as medidas dos campos eletromagnéticos gerados. A aplicação é a avaliação dessas influências sobre a componente radial do campo da espira na superfície terrestre, que é a componente empregada no método eletromagnético a multi-frequência (EMMF).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.