900 resultados para ROTATION CURVE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a general method for finding the exact analytical solution for the multi-channel curve crossing problem in the presence of delta function couplings. We have analysed the case where aa potential energy curve couples to a continuum (in energy) of the potential energy curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about ``300 mu G''(2 pi x 420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a method to determine the internal and external boundaries of planar workspaces, represented with an ordered set of points, is presented. The sequence of points are grouped and can be interpreted to form a sequence of curves. Three successive curves are used for determining the instantaneous center of rotation for the second one of them. The two extremal points on the curve with respect to the instantaneous center are recognized as singular points. The chronological ordering of these singular points is used to generate the two envelope curves, which are potentially intersecting. Methods have been presented in the paper for the determination of the workspace boundary from the envelope curves. Strategies to deal with the manipulators with joint limits and various degenerate situations have also been discussed. The computational steps being completely geometric, the method does not require the knowledge about the manipulator's kinematics. Hence, it can be used for the workspace of arbitrary planar manipulators. A number of illustrative examples demonstrate the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a geometrically irreductble smooth projective cruve defined over R. of genus at least 2. that admits a nontrivial automorphism, sigma. Assume that X does not have any real points. Let tau be the antiholomorphic involution of the complexification lambda(C) of X. We show that if the action of sigma on the set S(X) of all real theta characteristics of X is trivial. then the order of sigma is even, say 2k and the automorphism tau o (sigma) over cap (lambda) of X-C has a fixed point, where (sigma) over cap is the automorphism of X x C-R defined by sigma We then show that there exists X with a real point and admitting a nontrivial automorphism sigma, such that the action of sigma on S(X) is trivial, while X/ not equal P-R(1) We also give an example of X with no real points and admitting a nontrivial automorphisim sigma such that the automorphism tau o (sigma) over cap (lambda) has a fixed point, the action of sigma on S(X) is trivial, and X/ not equal P-R(1)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have studied the secondary flow induced in a micropolar fluid by the rotation of two concentric spheres about a fixed diameter. The secondary flow exhibits behaviour commonly observed in visco-elastic fluids. In particular we have obtained the expressions for microrotation vector. Numerical results have been obtained for a number of values of relative rotations of the two spheres for a chosen set of values of fluid parameters. The results are presented graphically and compared with the previous investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micropolar fluids like Newtonian and Non-Newtonian fluids cannot sustain a simple shearing motion, wherein only one component of velocity is present. They exhibit both primary and secondary motions when the boundaries are subject to slow rotations. The primary motion, as in Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., resembles that of Newtonian fluid for slow steady rotation. We further notice that the micro-rotation becomes identically equal to the vorticity present in the fluid and the condition b) of "Wall vorticity" can alone be satisfied at the boundaries. As regards, the secondary motion, we notice that it can be determined by the above procedure for a special class of fluids, namely that for which j0(n2-n3)=4 n3/l2. Moreover for this class of fluids, the micro-rotation is identical with the vorticity of the fluid everywhere. Also the stream function for the secondary flow is identical with that for the Newtonian fluid with a suitable definition of the Reynolds number. In contrast with the Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., this class of micropolar fluids does not show separation. This is in conformity with the statement of Condiff and Dahler (3) that in any steady flow, internal spin matches the vorticity everywhere provided that (i) spin boundary conditions are satisfied, (ii) body torques and non-conservative body forces are absent, and (iii) inertial and spin-inertial terms are either negligible or vanish identically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coexistence curve of the carbondisulphide-acetic anhydride system has been measured. The shape of the curve in the critical region (Xc ≈ 70.89 mole % mole % CS2 and Tc ≈ 30.56° C) is determined by the equation |X′ - X″| = Bx (1 - T/Tc)β with the critical indices β = 0.34 ± 0.01 and Bx = 1.7 ± 0.1 over a range 10-6 < (Tc - T)/Tc < 10-2. The values of β and Bx agree with those of other systems and the theoretical predictions of the Ising model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, well-replicated and robust sex differences in cognitive functions exist for handedness and mental rotation ability. A common characteristic in human cognitive functions is the lateralization of language functions. Handedness is a common measure of laterality and is related to language lateralization. The prevalence of left-handedness is higher in males than in females, the male to female ratio being about 1.2. Among cognitive abilities, the largest sex difference is evident in the Vandenberg and Kuse Mental Rotation Test (MRT), which requires the ability to rotate objects in mental space. On average, males achieve scores one standard deviation higher than females in the MRT. The present thesis investigated the origins of the sex differences in laterality and spatial ability as represented by handedness and mental rotation ability, respectively. Two population-based Finnish twin cohorts were utilized in this study. Handedness was studied in 25 810 twins and 4068 singletons born before 1958 from the Older Finnish Twin Cohort, and in 4736 twins born in 1983-87 from the FinnTwin12. MRT was studied in a sub-sample of 804 young adult participants from the FinnTwin12 sample. The main findings of this study were: 1) the prevalence of left-handedness was higher among males than among females in both singletons and in twins; 2) males had significantly higher scores than females in MRT; 3) about one quarter of the variance in handedness and about half of the variance in MRT was explained by genetic effects, whereas the remainder of the variance in these traits was explained by environmental effects unique to each individual. The magnitude of the genetic effects was similar in both sexes; 4) left-handedness was significantly less common in female co-twins of a male than in female co-twins of a female, and female co-twins of a male scored significantly higher than did female co-twins of a female in the Mental Rotation Test. This dissertation discusses whether these differences between females from opposite- and same-sex twin pairs are due to the prenatal transfer of testosterone from the male fetus in females with male co-twins or whether they arise from postnatal socialization effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis based on coherence theory is presented, which explains the experimentally observed rotation sensitivity of the contrast of Lau fringes obtained under spatially incoherent illumination.