979 resultados para RNA EDITING SITES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Crotalaria is one of the largest within the family Leguminosae-Papilionoideae, with more than 600 species. However, few karyotypes have been described. In the present paper, five species belonging to the section Hedriocarpae were studied (subsection Machrostachyae), in order to better understand chromosomal evolution in Crotalaria. The results reveals that all species presented 2n = 2x = 16 with symmetrical karyotypes, and slight differences in the chromosome morphology. A secondary constriction was identified at short arm of the pair 1. The 45S rDNA was mapped in the secondary constriction and adjacent heterochromatin (NOR-heterochromatin) and a minor site was identified in C. ochroleuca. The 5S rDNA was mapped linked to 45S rDNA at chromosome 1 short arm in all species. Additional sites for 5S rDNA were identified in C. pallida, C. striata and C. mucronata. Heterochromatin blocks around the centromeres are not CMA(+) neither DAPI(+). The karyotypes of the subsection Macrostachyae are characterized by an inversion at chromosome pair one in relation to previous specialized floral species analyzed. Additional sites of 45S and 5S rDNA were assumed to be a result of transposition events by different ways. The results suggest heterochromatin differentiation and the position of ribosomal genes indicates chromosomal rearrangements during evolution. Karyotype characteristics corroborate the morphological infrageneric classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian population represents an admixture of native Amerindians, Portuguese settlers and Africans who were brought as slaves during the colonization period that began in the 16th century and was followed by waves of immigrations of Europeans and Asians in the 20th century. The contribution of these different ethnic groups to the constitution of Brazilian populations from different geographic regions is variable and, in addition to environmental factors, might act by determining different allele profiles among Brazilian populations from different regions. We studied polymorphic sites at the 3' untranslated region of the HLA-G gene in individuals from a Northeastern Brazilian region and compared them to our previously published data about a Southeastern Brazilian region, located at a distance of 2589 km. Our results showed that most polymorphic sites present a similar distribution in both populations, except for the lower frequency of the +3003C allele in the Northeastern population compared to the Southeastern population. Although differences in genotypic distribution were only significant for the +3003 locus (P = 0.0201), the diversity of haplotypes was distinct for each population. These results are important for casecontrol studies on the association of human leucocyte antigen-G polymorphism with disease and also in terms of the genetic structure of two distinct Brazilian populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosomatidae is a family of early branching eukaryotes harbouring a distinctive repertoire of gene expression strategies. Functional mature messenger RNA is generated via the trans-splicing and polyadenylation processing of constitutively transcribed polycistronic units. Recently, trans-splicing of pre-small subunit ribosomal RNA in the 5' external transcribed spacer region and of precursor tRNAsec have been described. Here, we used a previously validated semi-nested reverse transcription-polymerase chain reaction strategy to investigate internal transcribed spacer (ITS) I acceptor sites in total RNA from Leishmania (Leishmania) amazonensis. Two distinct spliced leader-containing RNAs were detected indicating that trans-splicing reactions occur at two AG acceptor sites mapped in this ITS region. These data provide further evidence of the wide spectrum of RNA molecules that act as trans-splicing acceptors in trypanosomatids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads. An oligo RNA containing abasic sites that were derivatized with ARP was pulled down by streptavidin beads, whereas a control oligo RNA was not. In vitro oxidized RNA, as well as total cellular RNA, isolated from oxidatively stressed cells was also pulled down, dependent on oxidation level, and concentrated in the pull-down fraction. Quantitative reverse transcription polymerase chain reaction (RT-PCR) using RNA in the pull-down fraction demonstrated that several gene transcripts were uniquely increased in the fraction by oxidative stress. Thus, our method selectively concentrates oxidized RNA by pull-down and enables the assessment of oxidation levels of individual RNA species. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear receptors (NR) are ligand-activated transcription factors that regulate different metabolic pathways by influencing the expression of target genes. The current study examined mRNA abundance of NR and NR target genes at different sites of the gastrointestinal tract (GIT) and the liver of healthy dogs (Beagles; n = 11). Samples of GIT and liver were collected postmortem and homogenized, total RNA was extracted and reverse transcribed, and gene expression was quantified by real-time reverse-transcription PCR relative to the mean of 3 housekeeping genes (beta-actin, glyceraldehyde-3-phosphate dehydrogenase, and ubi-quitin). Differences were observed (P < or = 0.05) in the mRNA abundance among stomach (St), duodenum (Du), jejunum (Je), ileum (Il), and colon (Col) for NR [pregnane X receptor (Du, Je > Il, Col > St), peroxisome proliferator-associated receptor gamma (St, Du, Col > Je, Il), constitutive androstane receptor (Je, Du > Il, Col), and retinoid x receptor alpha (Du > Il)] and NR target genes [glutathione-S-transferase A3-3 (Du > Je > St, Il; St > Col), phenol-sulfating phenol sulfotransferase 1A1 (Du, Je > Il, St; Col > St), cytochrome P450 3A12 (Du, Je > St, Il, Col), multiple drug resistance gene 1 (Du, Je, Il, Col > St), multiple drug resistance-associated protein 2 (Je, Du > Il > St, Col), multiple drug resistance-associated protein 3 (Col > St > Il; Du > Je, Il; St > Il), NR corepressor 2 (St > Il, Col), and cytochrome P450 reductase (St, Du, Je > Il, Col)], but not for peroxisome proliferator-associated receptor alpha. Differences (P > 0.05) in mRNA abundance in the liver relative to the GIT were also observed. In conclusion, the presence of numerous differences in expression of NR and NR target genes in different parts of the GIT and in liver of healthy dogs may be associated with location-specific functions and regulation of GIT regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MuSVts110 is a conditionally defective mutant of Moloney murine sarcoma virus which undergoes a novel tmperature-dependent splice event at growth temperatures of 33$\sp\circ$C or lower. Relative to wild-type MuSV-124, MuSVts110 contains a 1487 base deletion spanning from the 3$\sp\prime$ end of the p30 gag coding region to just downstream of the first v-mos initiation codon. As a result, the gag and mos genes are fused out of frame and no v-mos protein is expressed. However, upon a shift to 33$\sp\circ$C or lower, a splice event occurs which removes 431 bases, realigns the gag and mos genes, and allows read-through translation of a P85gag-mos transforming protein. Interestingly, while the cryptic splice sites utilized in MuSVts110 are present and unaltered in MuSV-124, they are never used. Due to the 1487 base deletion, the MuSV-124 intron was reduced from 1919 to 431 bases suggesting that intron size might be involved in the activation of these cryptic splice sites in MuSVts110. Since the splicing phenotype of the MuSVts110 equivalent (TS32 DNA) which contains the identical 1487 base deletion introduced into otherwise wild-type MuSV-124 DNA, was indistinguishable from authentic MuSVts110, it was concluded that this deletion alone is responsible for activation of the cryptic splice sites used in MuSVts110. These results also confirmed that thermodependent splicing is an intrinsic property of the viral RNA and not due to some cellular defect. Furthermore, analysis of gag gene deletion and frameshift MuSVts110 mutants demonstrated that viral gag gene proteins do not play a role in regulation of MuSVts110 splicing. Instead, cis-acting viral sequences appear to mediate regulation of the splice event.^ Our initial observation that truncation of the MuSVts110 transcript, leaving only residual amounts of the flanking exon sequences, completely abolished splicing activity argued that exon sequences might participate in the regulation of the splice event.^ Analysis of exon sequence involvement has also identified cis-acting sequences important in the thermodependence of the splice event. Data suggest that regulation of the MuSVts110 splice event involves multiple interactions between specific intron and exon sequences and spliceosome components which together limit splicing activity to temperatures of 33$\sp\circ$C or lower while simultaneously restricting splicing to a maximum of 50% efficiency. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of HeLa cell lines which stably express beta-globin pre-mRNAs carrying point mutations at nt 654, 705, or 745 of intron 2 has been developed. The mutations generate aberrant 5' splice sites and activate a common 3' cryptic splice site upstream leading to aberrantly spliced beta-globin mRNA. Antisense oligonucleotides, which in vivo blocked aberrant splice sites and restored correct splicing of the pre-mRNA, revealed major differences in the sensitivity of these sites to antisense probes. Although the targeted pre-mRNAs differed only by single point mutations, the effective concentrations of the oligonucleotides required for correction of splicing varied up to 750-fold. The differences among the aberrant 5' splice sites affected sensitivity of both the 5' and 3' splice sites; in particular, sensitivity of both splice sites was severely reduced by modification of the aberrant 5' splice sites to the consensus sequence. These results suggest large differences in splicing of very similar pre-mRNAs in vivo. They also indicate that antisense oligonucleotides may provide useful tools for studying the interactions of splicing machinery with pre-mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in four distinct cases (out of four tested), including one fusion of three chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of two distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroviruses are RNA viruses that replicate through a double-stranded DNA intermediate. The viral enzyme reverse transcriptase copies the retroviral genomic RNA into this DNA intermediate through the process of reverse transcription. Many variables can affect the fidelity of reverse transcriptase during reverse transcription, including specific sequences within the retroviral genome. ^ Previous studies have observed that multiple cloning sites (MCS) and sequences predicted to form stable hairpin structures are hotspots for deletion during retroviral replication. The studies described in this dissertation were performed to elucidate the variables that affect the stability of MCS and hairpin structures in retroviral vectors. Two series of retroviral vectors were constructed and characterized in these studies. ^ Spleen necrosis virus-based vectors were constructed containing separate MCS insertions of varying length, orientation, and symmetry. The only MCS that was a hotspot for deletion formed a stable hairpin structure. Upon more detailed study, the MCS previously reported as a hotspot for deletion was found to contain a tandem linker insertion that formed a hairpin structure. Murine leukemia virus-based vectors were constructed containing separate sequence insertions of either inverted repeat symmetry (122IR) that could form a hairpin structure, or little symmetry (122c) that would form a less stable structure. These insertions were made into either the neomycin resistance marker ( neo) or the hygromycin resistance marker (hyg) of the vector. 122c was stable in both neo and hyg, while 122IR was preferentially deleted in neo and was remarkably unstable in hyg. ^ These results suggest that MCS are hotspots for deletion in retroviral vectors if they can form hairpin structures, and that hairpin structures can be highly unstable at certain locations in retroviral vectors. This information may contribute to improved design of retroviral vectors for such uses as human gene therapy, and will contribute to a greater understanding of the basic science of retroviral reverse transcription. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition