999 resultados para REWARD PREDICTION
Resumo:
Young novice drivers are significantly more likely to be killed or injured in car crashes than older, experienced drivers. Graduated driver licensing (GDL), which allows the novice to gain driving experience under less-risky circumstances, has resulted in reduced crash incidence; however, the driver's psychological traits are ignored. This paper explores the relationships between gender, age, anxiety, depression, sensitivity to reward and punishment, sensation-seeking propensity, and risky driving. Participants were 761 young drivers aged 17–24 (M= 19.00, SD= 1.56) with a Provisional (intermediate) driver's licence who completed an online survey comprising socio-demographic questions, the Impulsive Sensation Seeking Scale, Kessler's Psychological Distress Scale, the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, and the Behaviour of Young Novice Drivers Scale. Path analysis revealed depression, reward sensitivity, and sensation-seeking propensity predicted the self-reported risky behaviour of the young novice drivers. Gender was a moderator; and the anxiety level of female drivers also influenced their risky driving. Interventions do not directly consider the role of rewards and sensation seeking, or the young person's mental health. An approach that does take these variables into account may contribute to improved road safety outcomes for both young and older road users.
Resumo:
Motivation is a major driver of project performance. Despite team member ability to deliver successful project outcomes if they are not positively motivated to pursue joint project goals, then performance will be constrained. One approach to improving the motivation of project organizations is by offering a financial reward for the achievement of set performance standards above a minimum required level. However, little investigation has been undertaken into the features of successful incentive systems as a part of an overall delivery strategy. With input from organizational management literature, and drawing on the literature covering psychological and economic theories of motivation, this paper presents an integrated framework that can be used by project organizations to assess the impact of financial reward systems on motivation in construction projects. The integrated framework offers four motivation indicators which reflect key theoretical concepts across both psychological and economic disciplines. The indicators are: (1) Goal Commitment, (2) Distributive Justice, (3) Procedural Justice, and (4) Reciprocity. The paper also interprets the integrated framework against the results of a successful Australian social infrastructure project case study and identifies key learning’s for project organizations to consider when designing financial reward systems. Case study results suggest that motivation directed towards the achievement of incentive goals is influenced not only by the value placed on the financial reward for commercial benefit, but also driven by the strength of the project initiatives that encourage just and fair dealings, supporting the establishment of trust and positive reciprocal behavior across a project team. The strength of the project relationships was found to be influenced by how attractive the achievement of the goal is to the incentive recipient and how likely they were to push for the achievement of the goal. Interestingly, findings also suggested that contractor motivation is also influenced by the fairness of the performance measurement process and their perception of the trustworthiness and transparency of their client. These findings provide the basis for future research on the impact of financial reward systems on motivation in construction projects. It is anticipated that such research will shed new light on this complex topic and further define how reward systems should be designed to promote project team motivation. Due to the unique nature of construction projects with high levels of task complexity and interdependence, results are expected to vary in comparison to previous studies based on individuals or single-entity organizations.
Resumo:
In humans the presence of negative affect is thought to promote food intake, but there is widespread variability. Susceptibility to negative affect-induced eating may depend on trait eating behaviours, notably ‘emotional eating’, ‘restrained eating’ and ‘disinhibited eating’, but the evidence is not consistent. In the present study, 30 non-obese, non-dieting women were given access to palatable food whilst in a state of negative or neutral affect, induced by a validated autobiographical recall technique. As predicted, food intake was higher in the presence of negative affect; however, this effect was moderated by the pattern of eating behaviour traits and enhanced wanting for the test food. Specifically, the High Restraint-High Disinhibition subtype in combination with higher scores on emotional eating and food wanting was able to predict negative-affect intake (adjusted R2 = .61). In the absence of stress, individuals who are both restrained and vulnerable to disinhibited eating are particularly susceptible to negative affect food intake via stimulation of food wanting. Identification of traits that predispose individuals to overconsume and a more detailed understanding of the specific behaviours driving such overconsumption may help to optimise strategies to prevent weight gain.
Resumo:
Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
Associations between young children's attributions of emotion at different points in a story, and with regard to their own prediction about the story's outcome, were investigated using two hypothetical scenarios of social and emotional challenge (social entry and negative event). First grade children (N = 250) showed an understanding that emotions are tied to situational cues by varying the emotions they attributed both between and within scenarios. Furthermore, emotions attributed to the main protagonist at the beginning of the scenarios were differentially associated with children's prediction of a positive or negative outcome and with the valence of the emotion attributed at the end of the scenario. Gender differences in responses to some items were also found. © 2010 The British Psychological Society.
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.
Resumo:
Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.
Resumo:
The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.