967 resultados para RETINAL NERVE FIBER LAYER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pneumatic vehicle is provided with a first sub-assembly with a chassis, part of the vehicle body, a pair of B-pillars, a pair of rear rails, wheels, an elongate aluminum compressed load bearing air tank oriented longitudinally in the chassis, side panels connected to the tank and the wheels, a heat exchanger to heat the compressed air, and an air motor driven by the heated, compressed air and connected to a wheel. A ventilation system has a restrictive solenoid valve for directing air to the heat exchanger. The air tank is provided with a carbon filament reinforced plastic layer, and a fiberglass and aramid-fiber layer. A second sub-assembly includes part of the vehicle body bonded to the first-sub-assembly using a structural adhesive, a pair of A-pillars, and a pair of roof rails. Seating includes inflatable components for adjustment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors studied the histochemical and ultrastructural modifications that occur in the neuromuscular junctions (NMJ) of fibularis longus muscles of mice with an age range of 3 to 21 months. Twenty-four male and female animals were killed at 3, 5, 14 and 21 months of age: 7 of them at 3 months, 4 of them at 5 month, 9 at 14 months and 4 at 21 months. The fibularis longus muscles were processed and their NMJ examined with the transmission electron microscope. The most relevant changes were associated with the degeneration and retraction of terminal axons, i.e., axons poor in synaptic vesicles with degenerated mitochondria, and exhibiting multivesicular bodies and vacuoles; exposed and widened junctional folds and cytoplasmic processes of Schwann cells located in the synaptic gutter. The presence of lysosomes or lipofuchsin in the juxtajunctional sarcoplasm was also noted. These observations suggest that the phenomena of retraction and budding occur in the NMJ with advancing age, with a predominance of events associated with degeneration, leading to profound changes in NMJ shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper was to study the effect of sympathetic innervation on morphological and histochemical aspects of skeletal muscle tissue. Rabbit masseter muscle was studied using histochemical and immunohistochemical methods for periods of up to 18 months post-sympathectomy. The morphological and enzymatic characteristics of control masseter muscles were similar on both the left and right sides. The main features were muscle fibres with a mosaic pattern and a predominance of type IIa fibres, followed by type I. Type IIb fibres showed very low frequency. Sympathectomized animals showed varying degrees of metabolic and morphological alterations, especially 18 months after sympathectomy. The first five groups showed a higher frequency of type I fibres, whilst the oldest group showed a higher frequency of type lib fibres. In the oldest group, a significant variation in fibre diameter was observed. Many fibres showed small diameter, atrophy, hypertrophy, splitting, and necrosis. Areas with fibrosis were observed. Thus cervical sympathectomy induced morphological alterations in the masseter muscles. These alterations were, in part, similar to both denervation and myopathy. These findings indicate that sympathetic innervation contributes to the maintenance of the morphological and metabolic features of masseter muscle fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine the effects of end-to-side nerve repair performed only with fibrin glue containing nerve growth in rats. Methods: Seventy two Wistar rats were divided into six equal groups: group A was not submitted to nerve section; group B was submitted to nerve fibular section only. The others groups had the nerve fibular sectioned and then repaired in the lateral surface of an intact tibial nerve, with different procedures: group C: ETS with sutures; group D: ETS with sutures and NGF; group E: ETS with FG only; group F: ETS with FG containing NGF. The motor function was accompanied and the tibial muscle mass, the number and diameter of muscular fibers and regenerated axons were measured. Results: All the analyzed variables did not show any differences among the four operated groups (p>0.05), which were statistically superior to group B (p<0.05), but inferior to group A (p>0.05). Conclusion: The end-to-side nerve repair presented the same recovery pattern, independent from the repair used, showing that the addition of nerve growth factor in fibrin glue was not enough for the results potentiating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To test the hypothesis that the extraocular muscles (EOMs) of patients with infantile nystagmus have muscular and innervational adaptations that may have a role in the involuntary oscillations of the eyes. Methods: Specimens of EOMs from 10 patients with infantile nystagmus and postmortem specimens from 10 control subjects were prepared for histologic examination. The following variables were quantified: mean myofiber cross-sectional area, myofiber central nucleation, myelinated nerve density, nerve fiber density, and neuromuscular junction density. Results: In contrast to control EOMs, infantile nystagmus EOMs had significantly more centrally nucleated myofibers, consistent with cycles of degeneration and regeneration. The EOMs of patients with nystagmus also had a greater degree of heterogeneity in myofiber size than did those of controls, with no difference in mean myofiber cross-sectional area. Mean myelinated nerve density, nerve fiber density, and neuromuscular junction density were also significantly decreased in infantile nystagmus EOMs. Conclusions: The EOMs of patients with infantile nystagmus displayed a distinct hypoinnervated phenotype. This represents the first quantification of changes in central nucleation and myofiber size heterogeneity, as well as decreased myelinated nerve, nerve fiber, and neuromuscular junction density. These results suggest that deficits in motor innervation are a potential basis for the primary loss of motor control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. The purpose of this study is to examine the benefit of adding mfVEP hemifield Intersector analysis protocol to the standard HFA test when there is suspicious glaucomatous visual field loss. 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2, optical coherence tomography of the optic nerve head, and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. The retinal nerve fibre (RNFL) thickness was recorded to identify subjects with suspicious RNFL loss. The hemifield Intersector analysis of mfVEP results showed that signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the 3 groups (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 in glaucoma suspect group (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. The use of SAP and mfVEP results in subjects with suspicious glaucomatous visual field defects, identified by low RNFL thickness, is beneficial in confirming early visual field defects. The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol in addition to SAP analysis can provide information about focal visual field differences across the horizontal midline, and confirm suspicious field defects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. The Intersector analysis protocol can detect early field changes not detected by standard HFA test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.

We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.

We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.

The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose To examine macular retinal thickness and retinal layer thickness with spectral domain optical coherence tomography (OCT) in a population of children with normal ocular health and minimal refractive errors. Methods High resolution macular OCT scans from 196 children aged from 4 to 12 years (mean age 8 ± 2 years) were analysed to determine total retinal thickness and the thickness of 6 different retinal layers across the central 5 mm of the posterior pole. Automated segmentation with manual correction was used to derive retinal thickness values. Results The mean total retinal thickness in the central 1 mm foveal zone was 255 ± 16 μm, and this increased significantly with age (mean increase of 1.8 microns per year) in childhood (p<0.001). Age-related increases in thickness of some retinal layers were also observed, with changes of highest statistical significance found in the outer retinal layers in the central foveal region (p<0.01). Significant topographical variations in thickness of each of the retinal layers were also observed (p<0.001). Conclusions Small magnitude, statistically significant increases in total retinal thickness and retinal layer thickness occur from early childhood to adolescence. The most prominent changes appear to occur in the outer retinal layers of the central fovea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.