966 resultados para RED-GREEN
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0-4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization. © 2007 Springer-Verlag.
Resumo:
Gamma activity in the visual cortex has been reported in numerous EEG studies of coherent and illusory figures. A dominant theme of many such findings has been that temporal synchronization in the gamma band in response to these identifiable percepts is related to perceptual binding of the common features of the stimulus. In two recent studies using magnetoencephalography (MEG) and the beamformer analysis technique, we have shown that the magnitude of induced gamma activity in visual cortex is dependent upon independent stimulus features such as spatial frequency and contrast. In particular, we showed that induced gamma activity is maximal in response to gratings of 3 cycles per degree (3 cpd) of high luminance contrast. In this work, we set out to examine stimulus contrast further by using isoluminant red/green gratings that possess color but not luminance contrast using the same cohort of subjects. We found no induced gamma activity in V1 or visual cortex in response to the isoluminant gratings in these subjects who had previously shown strong induced gamma activity in V1 for luminance contrast gratings.
Resumo:
In an endeavour to provide further insight into the maturation of the cortical visual system in human infants, chromatic transient pattern reversal visual evoked potentials to red/green stimuli, were studied in a group of normal full term infants between the ages of 1 and 14 weeks post term in both cross sectional and longitudinal studies. In order to produce stimuli in which luminance cues had been eliminated with an aim to eliciting a chromatic response, preliminary studies of isoluminance determination in adults and infants were undertaken using behavioural and electrophysiological techniques. The results showed close similarity between the isoluminant ratio for adults and infants and all values were close to photometric isoluminance. Pattern reversal VEPs were recorded to stimuli of a range of red/green luminance ratios and an achromatic checkerboard. No transient VEP could be elicited with an isoluminant chromatic pattern reversal stimulus from any infant less than 7 weeks post term and similarly, all infants more than 7 weeks post term showed clear chromatic VEPs. The chromatic response first appeared at that age as a major positive component (P1) of long latency. This was delayed and reduced in comparison to the achromatic response. As the infant grew older, the latency of the P1 component decreased with the appearance of N1 and N by the 10th week post term. This finding was consistent throughout all infants assessed. In a behavioural study, no infant less than 7 weeks post term demonstrated clear discrimination of the chromatic stimulus, while those infants older than 7 weeks could do so. These findings are reviewed with respect to current neural models of visual development.
Resumo:
This thesis describes a series of experimental investigations into the functional organisation of human visual cortex using neuromagnetometry.This technique combines good spatial and temporal resolution enabling identification of the location and temporal response characteristics of cortical neurones within alert humans. To activate different neuronal populations and cortical areas a range of stimuli were used, the parameters of which were selected to match the known physiological properties of primate cortical neurones. In one series of experiments the evoked magnetic response was recorded to isoluminant red/green gratings. Co-registration of signal and magnetic resonance image data indicated a contribution to the response from visual areas V1, V2 and V4. To investigate the spatio-temporal characteristics of neurones within area V1 the evoked response was recorded for a range of stimulus spatial and temporal frequencies. The response to isoluminant red/green gratings was dominated by a major component which was found to have bandpass spatial frequency tuning with a peak at 1-2 cycles/degree, falling to the level of the noise at 6-8 cycles/degree. The temporal frequency tuning characteristics of the response showed bimodal sensitivity with peaks at 0-1Hz and 4Hz. In a further series of experiments the luminance evoked response was recorded to red/black, yellow/black and achromatic gratings and in all cases was found to be more complex than the isoluminant chromatic response, comprising up to three distinct components. The major response peak showed bandpass spatial frequency tuning characteristics, peaking at 6-8 cycles/degree, falling to the level of the noise at 12-16 cycles/degree. The results provide evidence to suggest that within area V1 the same neuronal population encodes both chromatic and luminance information and has spatial frequency tuning properties consistent with single-opponent cells. Furthermore, the results indicate that cells within area V1 encode chromatic motion information over a wide range of temporal frequencies with temporal response characteristics suggestive of the existence of a sub-population of cells sensitive to high temporal frequencies.
Resumo:
This study examined the use of non-standard parameters to investigate the visual field, with particular reference to the detection of glaucomatous visual field loss. Evaluation of the new perimetric strategy for threshold estimation - FASTPAC, demonstrated a reduction in the examination time of normals compared to the standard strategy. Despite an increased within-test variability the FASTPAC strategy produced a similar mean sensitivity to the standard strategy, reducing the effects of patient fatigue. The new technique of Blue-Yellow perimetry was compared to White-White perimetry for the detection of glaucomatous field loss in OHT and POAG. Using a database of normal subjects, confidence limits for normality were constructed to account for the increased between-subject variability with increase in age and eccentricity and for the greater variability of the Blue-Yellow field compared to the White-White field. Effects of individual ocular media absorption had little effect on Blue-Yellow field variability. Total and pattern probability analysis revealed five of 27 OHTs to exhibit Blue-Yellow focal abnormalities; two of these patients subsequently developed White-White loss. Twelve of the 24 POAGs revealed wider and/or deeper Blue-Yellow loss compared with the White-White field. Blue-Yellow perimetry showed good sensitivity and specificity characteristics, however, lack of perimetric experience and the presence of cataract influenced the Blue-Yellow visual field and may confound the interpretation of Blue-Yellow visual field loss. Visual field indices demonstrated a moderate relationship to the structural parameters of the optic nerve head using scanning laser tomography. No abnormalities in Blue-Yellow or Red-Green colour CS was apparent for the OHT patients. A greater vulnerability of the SWS pathway in glaucoma was demonstrated using Blue-Yellow perimetry however predicting which patients may benefit from B-Y perimetric examination is difficult. Furthermore, cataract and the extent of the field loss may limit the extent to which the integrity of the SWS channels can be selectively examined.
Resumo:
The object of the study was to investigate, establish and quantify the relationship between contrast sensitivity, intraocular light scatter and glare. The aim was to establish the effects on vision, in an effort to provide a more comprehensive understanding of the visual world of subjects prone to increased light scatter in the eye. Disability glare refers to the reduction in visual performance produced by a glare source. The reduction in visual performance can be explained by intraocular scattered light producing a veiling luminance which is superimposed upon the retinal image. This veiling luminance lowers contrast thus sensitivity to the stimulus declines. The effect of glare of luminance and colour contrast sensitivity for young and elderly subjects was examined. For both age groups, disability glare was greatest for the red-green stimulus and least for the blue-yellow. The precise effect of a glare source on colour discrimination depends upon the interaction between the chromaticity of the glare source and that of the stimulus. The effect of a long wavelength pass (red) and a short wavelength pass filter (blue) on disability glare was examined. Disability glare was not significantly different with the red and blue filters, even in the presence of wavelength dependent scatter. An equation was derived which allowed an intrinsic Light Scatter Factor (LSF) to be determined for any given glare angle (Paulsson and Sjöstrand, 1980). Corrections to the formula to account for factors such as pupil size changes are unnecessary. The results confirm the suitability of measuring the LSF using contrast threshold with and without glare, provided that appropriate methods are used. Using this formula an investigation into the amount of wavelength dependent scatter indicated that wavelength dependent scatter in normal young, elderly or cataractous eyes is of little or no significance. Finally, it seemed desirable to investigate the effect ultraviolet (UV) radiation has on intraocular light scatter and subsequently visual performance. Overall the results indicated that the presence or absence of UV radiation has relatively little effect on visual function for the young, elderly or cataract patient.
Resumo:
We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these 3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple multispectral capture system.
Resumo:
The classic hypothesis of Livingstone and Hubel (1984, 1987) proposed two types of color pathways in primate visual cortex based on recordings from single cells: a segregated, modularpathway that signals color but provides little information about shape or form and a second pathway that signals color differences and so defines forms without the need to specify their colors. A major problem has been to reconcile this neurophysiological hypothesis with the behavioral data. A wealth of psychophysical studies has demonstrated that color vision has orientation-tuned responses and little impairment on form related tasks, but these have not revealed any direct evidence for nonoriented mechanisms. Here we use a psychophysical method of subthreshold summation across orthogonal orientations for isoluminant red-green gratings in monocular and dichoptic viewing conditions to differentiate between nonoriented and orientation-tuned responses to color contrast. We reveal nonoriented color responses at low spatial frequencies (0.25-0.375 c/deg) under monocular conditions changing to orientation-tuned responses at higher spatial frequencies (1.5 c/deg) and under binocular conditions. We suggest that two distinct pathways coexist in color vision at the behavioral level, revealed at different spatial scales: one is isotropic, monocular, and best equipped for the representation of surface color, and the other is orientation-tuned, binocular, and selective for shape and form. This advances our understanding of the organization of the neural pathways involved in human color vision and provides a strong link between neurophysiological and behavioral data. © 2013 ARVO.
Resumo:
In this thesis we present an overview of sparse approximations of grey level images. The sparse representations are realized by classic, Matching Pursuit (MP) based, greedy selection strategies. One such technique, termed Orthogonal Matching Pursuit (OMP), is shown to be suitable for producing sparse approximations of images, if they are processed in small blocks. When the blocks are enlarged, the proposed Self Projected Matching Pursuit (SPMP) algorithm, successfully renders equivalent results to OMP. A simple coding algorithm is then proposed to store these sparse approximations. This is shown, under certain conditions, to be competitive with JPEG2000 image compression standard. An application termed image folding, which partially secures the approximated images is then proposed. This is extended to produce a self contained folded image, containing all the information required to perform image recovery. Finally a modified OMP selection technique is applied to produce sparse approximations of Red Green Blue (RGB) images. These RGB approximations are then folded with the self contained approach.
Resumo:
Purpose: It is widely accepted that pupil responses to visual stimuli are determined by the ambient illuminance, and recently it has been shown that changes in stimulus color also contributes to a pupillary control mechanism. However, the role of pupillary responses to chromatic stimuli is not clear. The aim of this study was to investigate how color and luminance signals contribute to the pupillary control mechanism. Methods: We measured pupillary iso-response contours in M-and L-cone contrast space. The iso-response contours in cone-contrast space have been determined to examine what mechanisms contribute to the pupillary pathway. The shapes of the iso-response contour change when different mechanisms determine the response. Results: It was shown that for all subjects, the pupillary iso-response contours form an ellipse with positive slope in cone-contrast space, indicating that the sensitivities to the chromatic stimuli are higher than those for the luminance stimuli. The pupil responds maximally to a grating that has a stronger L-cone modulation than the red-green isoluminant grating. Conclusions: The sensitivity of the chromatic pathway, in terms of pupillary response, is three times larger than that of the luminance pathway, a property that might have utility in clinical applications. Copyright © Taylor & Francis Group, LLC.
Resumo:
Purpose: To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Design: Prospective, clinical experimental study. Method: One hundred and two sequential visually impaired (average age 73.8 ± 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. Results: A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 ± 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Conclusions: Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired. © 2007 Elsevier Inc. All rights reserved.
Resumo:
In recent years, public discourse about German national identity has increasingly focussed on the large foreign population within Germany's borders. Whilst right-wing politicians such as Edmund Stoiber foster fears of identity loss ('Überfremdung'), more liberal observers, and indeed the ruling red-green coalition, acknowledge that multiethnicity has by now become an integral part of this identity. The debate experienced its provisional climax in late 2000 and early 2001. Friedrich Merz, then parliamentary leader of the CDU party, introduced the term 'Leitkultur' into the political discourse. The notion suggests the existence of a clearly identifiable spectrum of German cultural values and proposes that foreigners who wished to live in Germany should adhere to these values. Merz's proposal triggered a wave of highly controversial comments which have been evaluated for the purpose of this paper. It draws on roughly 350 newspaper articles and interviews and aims to introduce the English-speaking reader to the complex range of arguments. The Leitkultur debate is taken as symptomatic of the current state of public discourse about foreigners and national identity in Germany.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The seaweed Gracilaria domingensis is a common species in the coast of Rio Grande do Norte. This species lives in the intertidal zone, where colour strains (red, green and brown) co-occur during the whole year. Seaweeds that live in this region are exposed to daily changes and to the rhythm of the tide. During the low tide they are exposed to dissection, hiper-or hipo-osmotic shock, high temperatures and high irradiance. The aim of this study was to analyze whether the pigment and protein content of the colour strains of G. domingensis is affected by some environmental parameters in a temporal scale. The seaweeds were collected during 10 months in the seashore of Rio do Fogo (RN). The total soluble proteins and the phycobiliprotein were extracted in phosphate buffer and the carotenoids were analyzed by a standardized method through HPLC-UV. The pigments analysis showed that phycoerithrin is the most abundant pigment in the three strains. This pigment was strongly correlated with nitrogen and the photosynthetically active radiation. Chlorophyll presented higher concentrations than carotenoids during the whole, but the ratio carotenoid/chlorophyll-a was modified by incident radiation. The most abundant carotenoid was ß-carotene and zeaxanthin, which had higher concentrations in the higher radiation months. The concentration increase of zeaxanthin in this period indicated a photoprotective response of the seaweed. The three strains presented a pigment profile that indicates different radiation tolerance profile. Our results pointed that the green strain is better adapted to high irradiance levels than the red and brown strains