647 resultados para REARRANGEMENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of a freshwater species is often dependent on its ability to disperse within the riverine system. Species with high dispersal abilities tend to be widespread, whereas those with restricted dispersal tend to be geographically restricted and are usually given higher conservation priority. Population structure was compared between a widespread freshwater prawn species, Macrobrachium australiense, and a narrow-range endemic freshwater prawn, Macrobrachium koombooloomba. The distribution of M. australiense and M. koombooloomba did not overlap, although suggested historical river-boundary rearrangements indicate that there has been the potential for dispersal into neighbouring catchments. A fragment of the mtDNA CO1 gene was analysed and a Mantel test revealed a significant isolation by distance effect for both species. Significant overall FST values confirmed that both species exhibited low levels of dispersal, a prediction for populations inhabiting a fragmented upland environment. The level of structure in M. australiense is surprising for a widely distributed species. Not all M. australiense populations conformed to the stream-hierarchy model, with results being best explained by historical river realignment or cross-catchment dispersal. The fact that both species show limited dispersal highlights the importance of conservation in highland areas for both endemic and widely spread species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient’s disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions of dextrin with biotite mica and galena have been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of dextrin onto mica continuously increase with increase of pH, while those onto galena show a maximum at pH 11.5. It is observed that the adsorption density of dextrin onto galena is quite high compared to that on mica. Both the adsorption isotherms exhibit Langmuirian behavior. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in a shift of the shear plane, further away from the interface. Dissolution experiments indicate release of the lattice metal ions from mica and galena. Coprecipitation tests confirm polymer-metal ion interaction in the bulk solution. Dextrin does not exhibit any depressant action toward mica, whereas, with galena, the flotation recovery is decreased with an increase in pH beyond 9, in the presence of dextrin, complementing the adsorption results. Differential flotation results on a synthetic mixture of mica and galena show that mica can be selectively separated from galena using dextrin as a depressant for galena above pH 10. Possible mechanisms of interaction between dextrin and mica/galena are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the molecular mechanisms involved in ionophore-mediated cation transport would be valuable for under-standing many essential functions of biological membranes1−3. Cations are transported in several stages, such as formation of the ionophore−cation complex, diffusion across the cell membrane and subsequent release of the cation. Several conformational rearrangements are involved in this process, and so a detailed understanding of all the conformational possibilities of the ionophore seems to be essential for elucidating the molecular mechanism of ion transport. We are carrying out spectroscopic and crystallographic studies to explore the possible conformational stages of ionophores by complexing them, in different solvents, with cations of various sizes and charges. We report here a novel conformation of the ionophore valinomycin in its barium complex. It can be described as an extended depsipeptide chain, without internal hydrogen bonds, wound in the form of an ellipse with the two barium ions located at the foci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The Ewing sarcoma family of tumors (ESFT) are rare but highly malignant neoplasms that occur mainly in bone or but also in soft tissue. ESFT affects patients typically in their second decade of life, whereby children and adolescents bear the heaviest incidence burden. Despite recent advances in the clinical management of ESFT patients, their prognosis and survival are still disappointingly poor, especially in cases with metastasis. No targeted therapy for ESFT patients is currently available. Moreover, based merely on current clinical and biological characteristics, accurate classification of ESFT patients often fails at the time of diagnosis. Therefore, there is a constant need for novel molecular biomarkers to be applied in tandem with conventional parameters to further intensify ESFT risk-stratification and treatment selection, and ultimately to develop novel targeted therapies. In this context, a greater understanding of the genetics and immune characteristics of ESFT is needed. Aims: This study sought to open novel insights into gene copy number changes and gene expression in ESFT and, further, to enlighten the role of inflammation in ESFT. For this purpose, microarrays were used to provide gene-level information on a genomewide scale. In addition, this study focused on screening of 9p21.3 deletion sizes and frequencies in ESFT and, in another pediatric cancer, acute lymphocytic leukemia (ALL), in order to define more exact criteria for highrisk patient selection and to provide data for developing a more reliable diagnostic method to detect CDKN2A deletions. Results: In study I, 20 novel ESFT-associated suppressor genes and oncogenes were pinpointed using combined array CGH and expression analysis. In addition, interesting chromosomal rearrangements were identified: (1) Duplication of derivative chromosome der(22)(11;22) was detected in three ESFT patients. This duplication included the EWSR1-FLI1 fusion gene leading to increase in its copy number; (2) Cryptic amplifications on chromosomes 20 and 22 were detected, suggesting a novel translocation between chromosomes 20 and 22, which most probably produces a fusion between EWSR1 and NFATC2. In study II, bioinformatic analysis of ESFT expression profiles showed that inflammatory gene activation is detectable in ESFT patient samples and that the activation is characterized by macrophage gene expression. Most interestingly, ESFT patient samples were shown to express certain inflammatory genes that were prognostically significant. High local expression of C5 and JAK1 at the tumor site was shown to associate with favorable clinical outcome, whereas high local expression of IL8 was shown to be detrimental. Studies III and IV showed that the smallest overlapping region of deletion in 9p21.3 includes CDKN2A in all cases and that the length of this region is 12.2 kb in both Ewing sarcoma and ALL. Furthermore, our results showed that the most widely used commercial CDKN2A FISH probe creates false negative results in the narrowest microdeletion cases (<190 kb). Therefore, more accurate methods should be developed for the detection of deletions in the CDKN2A locus. Conclusions: This study provides novel insights into the genetic changes involved in the biology of ESFT, in the interaction between ESFT cells and immune system, and in the inactivation of CDKN2A. Novel ESFT biomarker genes identified in this study serve as a useful resource for future studies and in developing novel therapeutic strategies to improve the survival of patients with ESFT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvolysis of nine representative half ester acid chlorides in aqueous acetone have been studied. Isomers solvolyse at distinctly different rates and furnish the original acids. Contrary to the well accepted views, no evidence for tautomerism or isomerism between the isomeric pairs of acid chlorides could be detected. In a number of cases alkoxy group participates in the solvolysis of neighbouring acid chlorides. This results in (a) rate enhancement and (b) partial or total shift of the reaction pattern from SN2 to SN1. Isomeric half ester acid chlorides, in the presence of a sufficiently strong Lewis acid, could give the same oxonium salt. Rearrangements observed in the reactions of unsymmetrical 1,2- and 1,3-dicarboxylic acid derivatives could be ascribed to the prior formation of common oxonium salt intermediates in the presence of Lewis acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial degradation of geraniol, citronellol, linalool and their corresponding acetates, structurally modified linalool and linalyl acetate, α-terpineol and β-myrcene are presented. Oxygenative and prototropic rearrangements are normally observed during the microbial metabolism of monoterpenes. Three types of oxygenation reactions are observed, namely, (a) allylic oxygenation (b) oxygenation on a double bond and (c) addition of water across the double bond. The studies indicate commonality in the reaction types or processes occurring during the metabolism of various related monoterpenes and also establish the convergence of degradative pathways at a central catabolic intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of sequential data is required in many diverse areas such as telecommunications, stock market analysis, and bioinformatics. A basic problem related to the analysis of sequential data is the sequence segmentation problem. A sequence segmentation is a partition of the sequence into a number of non-overlapping segments that cover all data points, such that each segment is as homogeneous as possible. This problem can be solved optimally using a standard dynamic programming algorithm. In the first part of the thesis, we present a new approximation algorithm for the sequence segmentation problem. This algorithm has smaller running time than the optimal dynamic programming algorithm, while it has bounded approximation ratio. The basic idea is to divide the input sequence into subsequences, solve the problem optimally in each subsequence, and then appropriately combine the solutions to the subproblems into one final solution. In the second part of the thesis, we study alternative segmentation models that are devised to better fit the data. More specifically, we focus on clustered segmentations and segmentations with rearrangements. While in the standard segmentation of a multidimensional sequence all dimensions share the same segment boundaries, in a clustered segmentation the multidimensional sequence is segmented in such a way that dimensions are allowed to form clusters. Each cluster of dimensions is then segmented separately. We formally define the problem of clustered segmentations and we experimentally show that segmenting sequences using this segmentation model, leads to solutions with smaller error for the same model cost. Segmentation with rearrangements is a novel variation to the segmentation problem: in addition to partitioning the sequence we also seek to apply a limited amount of reordering, so that the overall representation error is minimized. We formulate the problem of segmentation with rearrangements and we show that it is an NP-hard problem to solve or even to approximate. We devise effective algorithms for the proposed problem, combining ideas from dynamic programming and outlier detection algorithms in sequences. In the final part of the thesis, we discuss the problem of aggregating results of segmentation algorithms on the same set of data points. In this case, we are interested in producing a partitioning of the data that agrees as much as possible with the input partitions. We show that this problem can be solved optimally in polynomial time using dynamic programming. Furthermore, we show that not all data points are candidates for segment boundaries in the optimal solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositional dependence of thermal properties, such as glass transition temperature (T-g), non-reversing enthalpy change (Delta H-NR) and the specific heat capacity change (Delta C-p) of melt quenched Ge7Se93-xSbx (21 a parts per thousand currency sign x a parts per thousand currency sign 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, T-g, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of T-g at an average coordination aOE (c) r > = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (Delta H-NR), which is centered around aOE (c) r > = 2.40. The change in specific heat capacity (Delta C-p) at T-g is also found to exhibit a distinct minima at aOE (c) r > = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around aOE (c) r > = 2.4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.