978 resultados para REACTION CHANNELS
Resumo:
A dissociation between two putative measures of resource allocation skin conductance responding, and secondary task reaction time (RT), has been observed during auditory discrimination tasks. Four experiments investigated the time course of the dissociation effect with a visual discrimination task. participants were presented with circles and ellipses and instructed to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of the other shape (task-irrelevant). Concurrent with this task, participants made a speeded motor response to an auditory probe. Experiment 1 showed that skin conductance responses were larger during task-relevant stimuli than during task-irrelevant stimuli, whereas RT to probes presented at 150 ms following shape onset was slower during task-irrelevant stimuli. Experiments 2 to 4 found slower RT during task-irrelevant stimuli at probes presented at 300 ms before shape onset until 150 ms following shape onset. At probes presented 3,000 and 4,000 ms following shape onset probe RT was slower during task-relevant stimuli. The similarities between the observed time course and the so-called psychological refractory period (PRF) effect are discussed.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory alpha and beta CNG channel homomers and alpha/beta heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
The omega-conotoxins are a set of structurally related, four-loop, six cysteine containing peptides, that have a range of selectivities for different subtypes of the voltage-sensitive calcium channel (VSCC). To investigate the basis of the selectivity displayed by these peptides, we have studied the binding affinities of two naturally occurring omega-conotoxins, MVIIA and MVIIC and a series of 14 MVIIA/MVIIC loop hybrids using radioligand binding assays for N and P/Q-type Ca2+ channels in rat brain tissue. A selectivity profile was developed from the ratio of relative potencies at N-type VSCCs (using [I-125]GVIA radioligand binding assays) and P/Q-type VSCCs (using [I-125]MVIIC radioligand binding assays). in these peptides, loops 2 and 4 make the greatest contribution to VSCC subtype selectivity, while the effects of loops 1 and 3 are negligible. Peptides with homogenous combinations of loop 2 and 4 display clear selectivity preferences, while those with heterogeneous combinations of loops 2 and 4 are less discriminatory. H-1 NMR spectroscopy revealed that the global folds of MVIIA, MVIIC and the 14 loop hybrid peptides were similar; however, several differences in local structure were identified. Based on the binding data and the 3D structures of MVIIA, GVIA and MVIIC, we have developed a preliminary pharmacophore based on the omega-conotoxin residues most Likely to interact with the N-type VSCC. (C) 1999 Academic Press.
Resumo:
C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease, Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-alpha, as well as polymorphonuclear leukocyte migration, increased TNF-alpha levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
General measures of reaction to noise, which assess the respondent's perceived affectedness or dissatisfaction, appear to be more valid and internally consistent than more narrow measures, such as specific assessment of noise annoyance. However, the test-retest reliability of general and specific measures has yet to be compared. As a part of the large-scale Sydney Airport Health Study, 97 respondents participated in the same interview twice, several weeks apart. Test-retest reliabilities were found to be significant (p
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.