978 resultados para RAPID SYNTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flower-like hierarchical architectures of layered SnS2 have been synthesized ionothermally for the first time, using a water soluble EMIM]BF4 ionic liquid (IL) as the solvent medium. At lower reaction temperatures, the hierarchical structures are formed of few-layered polycrystalline 2D nanosheet-petals composed of randomly oriented nanoparticles of SnS2. The supramolecular networks of the IL serve as templates on which the nanoparticles of SnS2 are glued together by combined effects of hydrogen bonding, electrostatic, hydrophobic and imidazolium stacking interactions of the IL, giving rise to polycrystalline 2D nanosheet-petals. At higher reaction temperatures, single crystalline plate-like nanosheets with well-defined crystallographic facets are obtained due to rapid inter-particle diffusion across the IL. Efficient surface charge screening by the IL favors the aggregation of individual nanosheets to form hierarchical flower-like architectures of SnS2. The mechanistic aspects of the ionothermal bottom-up hierarchical assembly of SnS2 nanosheets are discussed in detail. Li-ion storage properties of the pristine SnS2 samples are examined and the electrochemical performance of the sample synthesized at higher temperatures is found to be comparable to that reported for pristine SnS2 samples in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the recent reports pertaining to novel optical properties of ultra-small quantum dots (QDs) (r <2 nm), this nanomaterial is of relevance to both technology and science. However it is well known that in these size regimes most chalocogenide QD dispersions are unstable. Since applications often require use of QD dispersions (e.g. for deployment on a substrate), stabilizing these ultra-small particles is of practical relevance. In this work we demonstrate a facile, green, solution approach for synthesis of stable, ultra-small ZnO QDs having radius less than 2 nm. The particle size is calculated using Brits' equation and confirmed by transmission electron micrographs. ZnO QDs reported remain stable for > 120 days in ethanol (at similar to 298-303 K). We report digestive ripening (DR) in TEA capped ZnO QDs; this occurs rapidly over a short duration of 5 min. To explain this observation we propose a suitable mechanism based on the Lee's theory, which correlates the tendency of DR with the observed zeta potentials of the dispersed medium. To the best of our knowledge this is the (i) first report on DR in oxide QDs, as well as the first direct experimental verification of Lee's theory, and (ii) most rapid DR reported so far. The facile nature of the method presented here makes ultra-small ZnO readily accessible for fundamental exploration and technologically relevant applications. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combustion of oxidizer zinc nitrate and fuel oxalic acid results in quasi-fibrous zinc oxide. The processing parameters including oxidizer to fuel ratio, time and temperature were optimized for the resultant crystal structure and morphology. Pure hexagonal phase formation does not depend on the fuel ratio, but a stoichiometric ratio of oxidizer to fuel at 450 degrees C and 30 min results in highly crystalline ZnO with 3 mu m length and 0.5 mu m width. This quasi-fiber originates from partial fusion of near spherical, similar to 60 nm particles during the rapid rate of reaction in the combustion process. Transmission electron microscopic analysis confirms the anisotropic primary particle orientation and pore distribution within the developed quasi-fibrous particles. The degradation of methyl orange was assessed by degrading the dye in the presence of the synthesized ZnO (2.95 eV) under both UV and visible light. Quasi-fibrous zinc oxide exhibits effective photocatalytic efficiency under visible light irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid, metal-free and solvent-free (very low loading of solvent in few cases) reaction conditions for synthesizing thioamides and amides using a Bronsted super acid such as triflic acid has been developed. This method shows a broad substrate scope with a variety of electron-rich arenes including thiophene derivatives. The reaction works well for both aromatic as well as aliphatic isothiocyanates. Most of the thioamides are obtained in excellent yields in short reaction times and in most of the examples, a simple work up procedure has been developed which does not require further purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-step particle synthesis mechanism, also known as the Finke-Watzky (1997) mechanism, has emerged as a significant development in the field of nanoparticle synthesis. It explains a characteristic feature of the synthesis of transition metal nanoparticles, an induction period in precursor concentration followed by its rapid sigmoidal decrease. The classical LaMer theory (1950) of particle formation fails to capture this behavior. The two-step mechanism considers slow continuous nucleation and autocatalytic growth of particles directly from precursor as its two kinetic steps. In the present work, we test the two-step mechanism rigorously using population balance models. We find that it explains precursor consumption very well, but fails to explain particle synthesis. The effect of continued nucleation on particle synthesis is not suppressed sufficiently by the rapid autocatalytic growth of particles. The nucleation continues to increase breadth of size distributions to unexpectedly large values as compared to those observed experimentally. A number of variations of the original mechanism with additional reaction steps are investigated next. The simulations show that continued nucleation from the beginning of the synthesis leads to formation of highly polydisperse particles in all of the tested cases. A short nucleation window, realized with delayed onset of nucleation and its suppression soon after in one of the variations, appears as one way to explain all of the known experimental observations. The present investigations clearly establish the need to revisit the two-step particle synthesis mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.

This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.

This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.

The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.

The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate (TEPI) was initially adopted as a spacer reagent to prepare the bonded types of chiral stationary phases (CSPs) with cellulose derivatives. The silica-based CSPs were chemically prepared with non-regioselective and regioselective approaches and their chiral resolving capabilities were evaluated in terms of HPLC resolution of test enantiomers. It was observed that the chiral recognition capabilities of the non-regioselectively prepared CSPs were influenced by the amount of TEPI used. And also, the regioselectively prepared CSP generally showed a slightly higher resolution power than the non-regioselectively prepared CSP, while the non-regioselective procedures were highly advantageous to rapid preparation. In addition, chiral recognition of the prepared CSPs was affected by the properties of the used silica matrices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human serum albumin (HSA) was successfully bonded to silica with s-triazine as activator. The coupling reaction by this method was rapid and effective. The triazine-activated silica is relatively stable and can be installed for at least 1 month without obvious loss of reactivity when stored below 30 degreesC, pH below 7. It was observed that the amount of bound HSA reached 120 mg/g silica calculated from the UV absorbance difference of the HSA solution. d,l-tryptophan was selected as the probe solute to characterize the properties of HSA bonded s-triazine chiral stationary phase, and separation factor of 9.4 was obtained for d,l-tryptophan. Furthermore, the amount of effective HSA on silica was measured by high-performance frontal analysis, and only 16.8 mg/g silica was responsible for the resolution of d,l-tryptophan. These results indicate that the amount of both the bound and effective HSA on silica with triazine as activator was much higher than those by the Schiff base coupling method. Different kinds of enantiomers were resolved successfully on the aminopropylsilica-bonded HSA s-triazine chiral stationary phase. (C) 2000 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.