730 resultados para RAFM steel
Resumo:
The barrier effect and the performance of an organic–inorganic hybrid (OIH) sol–gel coating are highlydependent on the coating deposition method as well as processing conditions. In this work, studies onthe influence of experimental parameters using the dip coating method were performed. Factors suchas residence time (Rt), a curing step between each dip step and the number of layers of sol–gel OIHfilms deposited on HDGS to prevent corrosion in highly alkaline environments were studied. These OIHcoatings were obtained using a functionalized siloxane, 3-isociantepropyltriethoxysilane that reactedwith a diamino-functionalized oligopolymer (Jeffamine®D-230). The barrier efficiency of OIH coatings insimulated concrete pore solutions (SCPS) was assessed in the first moments of contact, by electrochemicalimpedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings inSCPS was monitored during eight days by macrocell current density. The morphological characterizationof the surface was performed by scanning electronic microscopy before and after exposure to SCPS.Glow discharge optical emission spectroscopy was used to obtain quantitative composition profiles toinvestigate the thickness of the OIH coatings as a function of the number of layers deposited and theinfluence of the Rt in the coating thickness.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 160:10 (2013) 467-479 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33855
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784. Errata disponível no RepositóriUM em: http://hdl.handle.net/1822/40064. (Publisher’s note: An erratum that addressed the errors in Figure 9 was originally published on Dec. 10, 2014, however the graphs in that erratum were not correct.)
Resumo:
Degree of Doctor of Philosophy of Structural/Civil Engineering
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015
Resumo:
The study was performed in the installations of OCAS, a Steel Research Centre of ArcelorMittal. Taking M32 steel (3.25%Si+0.9%Al) as the basis chemical composition and three different thicknesses (0.35, 0.5 and 0.65mm), different annealing conditions (temperature and time) have been applied in the laboratory simulator at St. Chély, France. The aim was to link annealing parameters, grain size and energy loss. It was determined the optimum annealing parameters to reach the lowest power losses for three different grades of non-oriented fully processed electrical steel. In addition, M250-50 samples having different magnetic behaviour (high and low losses) but the same grain size and texture, have been analyzed in terms of TEM observations of their precipitates, in the University of Marseille. The results reveal that a high amount of medium and big precipitates (&10 nm) worsen the magnetic properties of the material. The small precipitates (&10nm) do not have a strong influence on the magnetic properties. The presence of precipitates can have a great influence on the power losses and further work is clearly necessary.
Resumo:
The influence of chemistry and soaking temperature (maximal temperature of the continuous annealing) on the final properties of non-oriented electrical steels has been studied. With this objective two different studies have been performed. First the Mn, Ni and Cr content of a low loss electrical steel composition has been modified. An intermediate content and a high content of each element has been added in order to study the influence of this components on the magnetic looses, grain size and texture. Secondly the influence of the soaking temperature on magnetic properties, grain size and oxidation in four grades of non-oriented electrical steels (Steel A, B, C and D) was studied.
Resumo:
Over the years, bridge engineers have been concerned about the response of prestressed concrete (PC) girder bridges that had been hit by over-height vehicles or vehicle loads. When a bridge is struck by an over-height vehicle or vehicle load, usually the outside and in some instances one of the interior girders are damaged in a bridge. The effect of intermediate diaphragms in providing damage protection to the PC girders of a bridge is not clearly defined. This analytical study focused on the role of intermediate diaphragms in reducing the occurrence of damage in the girders of a PC-girder bridge that has been struck by an over-height vehicle or vehicle load. The study also investigated whether a steel, intermediate diaphragm would essentially provide the same degree of impact protection for PC girders as that provided by a reinforced-concrete diaphragm. This investigation includes the following: a literature search and a survey questionnaire to determine the state-of-the-art in the use and design of intermediate diaphragms in PC-girder bridges. Comparisons were made between the strain and displacement results that were experimentally measured for a large-scale, laboratory, model bridge during previously documented work and those results that were obtained from analyses of the finite-element models that were developed during this research for that bridge. These comparisons were conducted to calibrate the finite element models used in the analyses for this research on intermediate diaphragms. Finite-element models were developed for non-skewed and skewed PC-girder bridges. Each model was analyzed with either a reinforced concrete or two types of steel, intermediate diaphragms that were located at mid-span of an interior span for a PC-girder bridge. The bridge models were analyzed for lateral-impact loads that were applied to the bottom flange of the exterior girders at the diaphragms location and away from the diaphragms location. A comparison was conducted between the strains and displacements induced in the girders for each intermediate-diaphragm type. These results showed that intermediate diaphragms have an effect in reducing impact damage to the PC girders. When the lateral impact-load was applied at the diaphragm location, the reinforced-concrete diaphragms provided more protection for the girders than that provided by the two types of steel diaphragms. The three types of diaphragms provided essentially the same degree of protection to the impacted, PC girder when the lateral-impact load was applied away from the diaphragm location.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
Donateur : Vassal, Gabrielle Maud (1880-1959)
Resumo:
Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.