244 resultados para RADIUM
Resumo:
Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.
Resumo:
Uranium, radium, thorium and ionium were determined directly on seven concretions from three stations in the Indian Ocean, and on two concretions and a manganese-rich crust from two stations in the Pacific Ocean. The uranium content averages 3 to 5 gamma/g and the thorium content varies only slightly, but the Th/U ratio in the concretions is typically 2 to 5 in the Indian Ocean and 5 to 15.5 in the Pacific. The ionium content ranges from 1.0 x 10-9 to 3.6 10**-9 g/g in concretions from both oceans. Radium is more abundant in specimens from the Pacific Ocean (Ra = 3 - 12.7 x 10**-11 g/g) than from the Indian Ocean (1.5 - 5.2 x 10**-11 g/g). Analyses for Ca, Mn, Fe, Si, Ni, P, and ignition loss are also given. Radioactive equilibria between uranium, ionium, and radium are strongly disturbed throughout the concretions, and the RA/U and lo/U ratios generally exceed equilibrium ratios. Migration of radium from interior layers was established, so that neither determination of the ages of the concretions nor of their rates of growth can be considered reliable. The age of the concretions cannot exceed 800,000 years, and all grew within relatively short periods of time; there may have been "dormant" periods during growth. Estimates of growth rates are calculated from the radium and ionium contents; they show marked discordance.
Resumo:
This paper reports the results of the investigations of 2006-2007 on the distribution and migration forms of artificial radionuclides and chemical elements in the Ob-Irtysh water system. Three regions were studied. One of them is a local segment of the Ob River upstream from the confluence with the Irtysh River; its investigation allowed us to estimate the general radioecological state of the aquatic environment affected by the activity of the Tomsk 7 plant. The second region is a local segment of the Irtysh River upstream from its confluence with the Ob River, where the influence of emissions from the NPO Mayak could be estimated. The third region is the water area of the Ob River after its confluence with the Irtysh River. It characterizes the real level of radioactive and chemical contamination of the middle reaches of the Ob River. In order to explain horizontal variations in the distribution of radionuclides in the upper layer of bottom sediments collected at various sites, the results of sorption-kinetic experiments with radioactive tracers in the precipitate-solution system were used. The investigation of the migration forms of trace elements and radionuclides occurring in river water was based on the method of tangential-flow membrane filtration. Chemical element contents were determined in 400-ml water samples. A set of Millipore polysulfone membranes with pore sizes of 8, 1.2, 0.45, 0.1, and 0.025 µm was employed. Taking into account the ultralow specific concentrations of radionuclides in the water, they were analyzed in 300-500 litre samples using Millipore polysulfone membranes with pore sizes of 0.45 µm and 15 kDa. This allowed us to estimate the percentages of cesium-137 and plutonium-239, 240 in the suspended particulate fraction, colloids, and dissolved species.