979 resultados para RADIOACTIVE IODINE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear medicine imaging techniques such as PET are of increasing relevance in pharmaceutical research being valuable (pre)clinical tools to non-invasively assess drug performance in vivo. Therapeutic drugs, e.g. chemotherapeutics, often suffer from a poor balance between their efficacy and toxicity. Here, polymer based drug delivery systems can modulate the pharmacokinetics of low Mw therapeutics (prolonging blood circulation time, reducing toxic side effects, increasing target site accumulation) and therefore leading to a more efficient therapy. In this regard, poly-N-(2-hydroxypropyl)-methacrylamide (HPMA) constitutes a promising biocompatible polymer. Towards the further development of these structures, non-invasive PET imaging allows insight into structure-property relationships in vivo. This performant tool can guide design optimization towards more effective drug delivery. Hence, versatile radiolabeling strategies need to be developed and establishing 18F- as well as 131I-labeling of diverse HPMA architectures forms the basis for short- as well as long-term in vivo evaluations. By means of the prosthetic group [18F]FETos, 18F-labeling of distinct HPMA polymer architectures (homopolymers, amphiphilic copolymers as well as block copolymers) was successfully accomplished enabling their systematic evaluation in tumor bearing rats. These investigations revealed pronounced differences depending on individual polymer characteristics (molecular weight, amphiphilicity due to incorporated hydrophobic laurylmethacrylate (LMA) segments, architecture) as well as on the studied tumor model. Polymers showed higher uptake for up to 4 h p.i. into Walker 256 tumors vs. AT1 tumors (correlating to a higher cellular uptake in vitro). Highest tumor concentrations were found for amphiphilic HPMA-ran-LMA copolymers in comparison to homopolymers and block copolymers. Notably, the random LMA copolymer P4* (Mw=55 kDa, 25% LMA) exhibited most promising in vivo behavior such as highest blood retention as well as tumor uptake. Further studies concentrated on the influence of PEGylation (‘stealth effect’) in terms of improving drug delivery properties of defined polymeric micelles. Here, [18F]fluoroethylation of distinct PEGylated block copolymers (0%, 1%, 5%, 7%, 11% of incorporated PEG2kDa) enabled to systematically study the impact of PEG incorporation ratio and respective architecture on the in vivo performance. Most strikingly, higher PEG content caused prolonged blood circulation as well as a linear increase in tumor uptake (Walker 256 carcinoma). Due to the structural diversity of potential polymeric carrier systems, further versatile 18F-labeling strategies are needed. Therefore, a prosthetic 18F-labeling approach based on the Cu(I)-catalyzed click reaction was established for HPMA-based polymers, providing incorporation of fluorine-18 under mild conditions and in high yields. On this basis, a preliminary µPET study of a HPMA-based polymer – radiolabeled via the prosthetic group [18F]F-PEG3-N3 – was successfully accomplished. By revealing early pharmacokinetics, 18F-labeling enables to time-efficiently assess the potential of HPMA polymers for efficient drug delivery. Yet, investigating the long-term fate is essential, especially regarding prolonged circulation properties and passive tumor accumulation (EPR effect). Therefore, radiolabeling of diverse HPMA copolymers with the longer-lived isotope iodine-131 was accomplished enabling in vivo evaluation of copolymer P4* over several days. In this study, tumor retention of 131I-P4* could be demonstrated at least over 48h with concurrent blood clearance thereby confirming promising tumor targeting properties of amphiphilic HPMA copolymer systems based on the EPR effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate whether virtual non-enhanced imaging (VNI) is effective to replace true non-enhanced imaging (TNI) applying iodine removal in intravenous dual-energy CT-cholangiography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CT pulmonary angiography is the currently accepted standard in ruling out acute pulmonary embolism. Issues of radiation dose received by patients via CT have been extensively disputed by radiologists and reported by the media. In recent years there has been considerable research performed to find ways for reducing radiation exposure from CT. Herein, we will discuss specific measures that have been shown to be valuable for CT pulmonary angiography. The limitations and the potential benefits of reduced CT peak tube kilovoltage will be detailed as this method is capable of reducing both radiation exposure and iodine load to the patient simultaneously. We discuss some of the emerging tools, which will hopefully play a significant role in wider acceptance of low-dose CT pulmonary angiography protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

29I is one of the major dose-determining nuclides in the safety analysis of deep storage of radioactive waste. Iodine forms anionic species that hardly sorb on the surfaces of common host-rock minerals. Recently, interest has arisen on the role of pyrite, an accessory mineral capable of binding anionic selenium. Whereas the interaction of selenium with pyrite is well documented, corresponding results on iodine sorption are still scarce and controversial. Pyrite is present in argicilleous rocks which are being considered in many countries as potential host rocks for a radioactive waste repository. The uptake of iodide (I−) on natural pyrite was investigated under nearly anoxic conditions (O2 < 5 ppm) over a wide concentration range (10−11–10−3 M total I−) using 125I as the radioactive tracer. Weak but measurable sorption was observed; distribution coefficients (R d) were less than 0.002 m3 kg−1 and decreased with increasing total iodide concentration. Iodide sorption was connected to the presence of oxidized clusters on the pyrite surface, which were presumably formed by reaction with limited amounts of dissolved oxygen. The results obtained indicated that pyrite cannot be considered as an effective scavenger of 129I under the geochemical conditions prevailing in underground radioactive waste geologic storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prospectively investigated urinary iodine concentration (UIC) in pregnant women and in female, non-pregnant controls in the canton of Berne, Switzerland, in 1992. Mean UIC of pregnant women [205 +/- 151 microg iodine/g creatinine (microg l/g Cr); no. = 153] steadily decreased from the first (236 +/- 180 microg l/g Cr; no. = 31) to the third trimester (183 +/- 111 microg l/g Cr, p < 0.0001; no. = 66) and differed significantly from that of the control group (91 +/- 37 microg l/g Cr, p < 0.0001; no. = 119). UIC increased 2.6-fold from levels indicating mild iodine deficiency in controls to the first trimester, demonstrating that high UIC during early gestation does not necessarily reflect a sufficient iodine supply to the overall population. Pregnancy is accompanied by important alterations in the regulation of thyroid function and iodine metabolism. Increased renal iodine clearance during pregnancy may explain increased UIC during early gestation, whereas increased thyroidal iodine clearance as well as the iodine shift from the maternal circulation to the growing fetal-placental unit, which both tend to lower the circulating serum levels of inorganic iodide, probably are the causes of the continuous decrease of UIC over the course of pregnancy. Mean UIC in our control group, as well as in one parallel and several consecutive investigations in the same region in the 1990s, was found to be below the actually recommended threshold, indicating a new tendency towards mild to moderate iodine deficiency. As salt is the main source of dietary iodine in Switzerland, its iodine concentration was therefore increased nationwide in 1998 for the fourth time, following increases in 1922, 1965 and 1980.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The factors mediating the accumulation of thyroglobulin are of great importance to the understanding of the pathogenesis of human and experimentally induced colloid goiters. To elucidate further the underlying cellular mechanism, thyroid fragments from newborn rats were incorporated into semisolid alginate beads and were cultured as three-dimensional organoids for up to 21 d. In five parallel cultures, the medium contained either no supplements (group A), Nal (group B), thyroid-stimulating hormone (TSH) (group C), Nal plus TSH in the same concentrations as B and C (group D), or Nal and TSH (as in group D) plus methimazole (MMI, group E). The thyroid organoids maintained morphological integrity, functional activity, and ability to proliferate in vitro. Addition of iodine to the cultures significantly increased mean (+/-SEM) follicular diameters from 19.5 +/- 0.7 microm in controls to 33.9 +/- 2.2 microm (p < 0.0001) when NaI was added alone (group B), and 30.4 +/- 1.7 microm (p < 0.0001) when combined with TSH (group D). The effect of NaI on follicular size was abolished by MMI (group E, follicular diameter 23.5 +/- 1.3 microm). The results presented support the recent finding, using a rat colloid goiter model, that not only TSH but also iodine organification or its inhibition are important factors in modulating follicular morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.