896 resultados para Query
Resumo:
RDB2RDF systems generate RDF from relational databases, operating in two di�erent manners: materializing the database content into RDF or acting as virtual RDF datastores that transform SPARQL queries into SQL. In the former, inferences on the RDF data (taking into account the ontologies that they are related to) are normally done by the RDF triple store where the RDF data is materialised and hence the results of the query answering process depend on the store. In the latter, existing RDB2RDF systems do not normally perform such inferences at query time. This paper shows how the algorithm used in the REQUIEM system, focused on handling run-time inferences for query answering, can be adapted to handle such inferences for query answering in combination with RDB2RDF systems.
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
Resumo:
Testbeds proposed so far to evaluate, compare, and eventually improve SPARQL query federation systems have still some limitations. Some variables and con�gurations that may have an impact on the behavior of these systems (e.g., network latency, data partitioning and query properties) are not su�ciently de�ned; this a�ects the results and repeatability of independent evaluation studies, and hence the insights that can be obtained from them. In this paper we evaluate FedBench, the most comprehensive testbed up to now, and empirically probe the need of considering additional dimensions and variables. The evaluation has been conducted on three SPARQL query federation systems, and the analysis of these results has allowed to uncover properties of these systems that would normally be hidden with the original testbeds.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
In this paper we study query answering and rewriting in ontologybased data access. Specifically, we present an algorithm for computing a perfect rewriting of unions of conjunctive queries posed over ontologies expressed in the description logic ELHIO, which covers the OWL 2 QL and OWL 2 EL profiles. The novelty of our algorithm is the use of a set of ABox dependencies, which are compiled into a so-called EBox, to limit the expansion of the rewriting. So far, EBoxes have only been used in query rewriting in the case of DL-Lite, which is less expressive than ELHIO. We have extensively evaluated our new query rewriting technique, and in this paper we discuss the tradeoff between the reduction of the size of the rewriting and the computational cost of our approach.
Resumo:
R2RML is used to specify transformations of data available in relational databases into materialised or virtual RDF datasets. SPARQL queries evaluated against virtual datasets are translated into SQL queries according to the R2RML mappings, so that they can be evaluated over the underlying relational database engines. In this paper we describe an extension of a well-known algorithm for SPARQL to SQL translation, originally formalised for RDBMS-backed triple stores, that takes into account R2RML mappings. We present the result of our implementation using queries from a synthetic benchmark and from three real use cases, and show that SPARQL queries can be in general evaluated as fast as the SQL queries that would have been generated by SQL experts if no R2RML mappings had been used.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
Ontology-based data access (OBDA) systems use ontologies to provide views over relational databases. Most of these systems work with ontologies implemented in description logic families of reduced expressiveness, what allows applying efficient query rewriting techniques for query answering. In this paper we describe a set of optimisations that are applicable with one of the most expressive families used in this context (ELHIO¬). Our resulting system exhibits a behaviour that is comparable to the one shown by systems that handle less expressive logics.
Resumo:
Ontology-Based Data Access (OBDA) permite el acceso a diferentes tipos de fuentes de datos (tradicionalmente bases de datos) usando un modelo más abstracto proporcionado por una ontología. La reescritura de consultas (query rewriting) usa una ontología para reescribir una consulta en una consulta reescrita que puede ser evaluada en la fuente de datos. Las consultas reescritas recuperan las respuestas que están implicadas por la combinación de los datos explicitamente almacenados en la fuente de datos, la consulta original y la ontología. Al trabajar sólo sobre las queries, la reescritura de consultas permite OBDA sobre cualquier fuente de datos que puede ser consultada, independientemente de las posibilidades para modificarla. Sin embargo, producir y evaluar las consultas reescritas son procesos costosos que suelen volverse más complejos conforme la expresividad y tamaño de la ontología y las consultas aumentan. En esta tesis exploramos distintas optimizaciones que peuden ser realizadas tanto en el proceso de reescritura como en las consultas reescritas para mejorar la aplicabilidad de OBDA en contextos realistas. Nuestra contribución técnica principal es un sistema de reescritura de consultas que implementa las optimizaciones presentadas en esta tesis. Estas optimizaciones son las contribuciones principales de la tesis y se pueden agrupar en tres grupos diferentes: -optimizaciones que se pueden aplicar al considerar los predicados en la ontología que no están realmente mapeados con las fuentes de datos. -optimizaciones en ingeniería que se pueden aplicar al manejar el proceso de reescritura de consultas en una forma que permite reducir la carga computacional del proceso de generación de consultas reescritas. -optimizaciones que se pueden aplicar al considerar metainformación adicional acerca de las características de la ABox. En esta tesis proporcionamos demostraciones formales acerca de la corrección y completitud de las optimizaciones propuestas, y una evaluación empírica acerca del impacto de estas optimizaciones. Como contribución adicional, parte de este enfoque empírico, proponemos un banco de pruebas (benchmark) para la evaluación de los sistemas de reescritura de consultas. Adicionalmente, proporcionamos algunas directrices para la creación y expansión de esta clase de bancos de pruebas. ABSTRACT Ontology-Based Data Access (OBDA) allows accessing different kinds of data sources (traditionally databases) using a more abstract model provided by an ontology. Query rewriting uses such ontology to rewrite a query into a rewritten query that can be evaluated on the data source. The rewritten queries retrieve the answers that are entailed by the combination of the data explicitly stored in the data source, the original query and the ontology. However, producing and evaluating the rewritten queries are both costly processes that become generally more complex as the expressiveness and size of the ontology and queries increase. In this thesis we explore several optimisations that can be performed both in the rewriting process and in the rewritten queries to improve the applicability of OBDA in real contexts. Our main technical contribution is a query rewriting system that implements the optimisations presented in this thesis. These optimisations are the core contributions of the thesis and can be grouped into three different groups: -optimisations that can be applied when considering the predicates in the ontology that are actually mapped to the data sources. -engineering optimisations that can be applied by handling the process of query rewriting in a way that permits to reduce the computational load of the query generation process. -optimisations that can be applied when considering additional metainformation about the characteristics of the ABox. In this thesis we provide formal proofs for the correctness of the proposed optimisations, and an empirical evaluation about the impact of the optimisations. As an additional contribution, part of this empirical approach, we propose a benchmark for the evaluation of query rewriting systems. We also provide some guidelines for the creation and expansion of this kind of benchmarks.
Resumo:
Natural Language Interfaces to Query Databases (NLIDBs) have been an active research field since the 1960s. However, they have not been widely adopted. This article explores some of the biggest challenges and approaches for building NLIDBs and proposes techniques to reduce implementation and adoption costs. The article describes {AskMe*}, a new system that leverages some of these approaches and adds an innovative feature: query-authoring services, which lower the entry barrier for end users. Advantages of these approaches are proven with experimentation. Results confirm that, even when {AskMe*} is automatically reconfigurable against multiple domains, its accuracy is comparable to domain-specific NLIDBs.
Resumo:
Bibliography: p. [77]-78.
Resumo:
Mode of access: Internet.
Resumo:
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.
Resumo:
In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.