573 resultados para QCD sumrules
Resumo:
It is known that the short distance QCD contribution to the mass difference of pions is quadratic on the quark masses, and irrelevant with respect to the long distance part. It is also considered in the literature that its calculation contains infinities, which should be absorbed by the quark mass renormalization. Following a prescription by Craigie, Narison, and Riazuddin of a renormalization-group-improved perturbation theory to deal with the electromagnetic mass shift problem in QCD, we show that the short distance QCD contribution to the electroweak pion mass difference (with mu=md≠0) is finite and, of course, its value is negligible compared to other contributions.
Resumo:
We construct composite operators in two-dimensional bosonized QCD, which obey a W∞ algebra, and discuss their relation to analogous objects recently obtained in the fermionic language. A complex algebraic structure is unravelled, supporting the idea that the model is integrable. For singlets we find a mass spectrum obeying the Regge behavior.
Resumo:
QCD sum rules are used to calculate the contribution of the short-distance single-quark transition s-->d gamma to the amplitudes of the hyperon radiative decay Omega(-)-->Xi(-) gamma. We reevaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit.
Resumo:
We use the QCD sum rules to study possible B-c-like molecular states. We consider isoscalar J(P) = 0(+) and J(P) = 1(+) D(*) B(*) molecular currents. We consider the contributions of condensates up to dimension eight and we work at leading order in alpha(s). We obtain for these states masses around 7 GeV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We estimate the masses of the 1(--) heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha(s) but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y-c(4260, 4360, 4660) and Y-b(10890) 1(--) experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1(--) four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0(++) four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1(--) states, while the splittings between the 0(++) lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1(--) and 0(++) four-quark states which are tiny and which exhibit a 1/M-Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.
Resumo:
We use the QCD sum rules to study the recently observed charmonium-like structure Z+ c (3900) as a tetraquark state. We evaluate the three-point function and extract the coupling constants of the Z+ c J/ψ π+, Z+ c ηc ρ+ and Z+ c D+ ¯D∗0 vertices and the corresponding decay widths in these channels. The results obtained are in good agreement with the experimental data and supports to the tetraquark picture of this state.
Resumo:
We study, using the QCD sum rule framework, the possible existence of a charmed pentaquark that we call Θc(3250). In the QCD side we work at leading order in αs and consider condensates up to dimension 10. The mass obtained: mΘc = (3.21±0.13) GeV, is compatible with the mass of the structure seen by BaBar Collaboration in the decay channel B− →  ̄p Σ++ c π−π−.
Resumo:
We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of Tcc and X(3872) assuming that they are respectively described by the D−D∗ and D− ¯D∗ molecular currents. We found (within our approximation) that the masses of these two states are almost degenerate. Since the pion exchange interaction between these mesons is exactly the same, we conclude that if the observed X(3872) meson is a D ¯D∗ + c.c. molecule, then the DD∗ molecule should also exist with approximately the same mass. An extension of the analysis to the b-quark case leads to the same conclusion. We also study the SU(3) breakings for the T s Q Q /TQ Q mass ratios. Motivated by the recent Belle observation of two Zb states, we revise our determination of Xb by combining results from exponential and FESR sum rules.