989 resultados para Pulsed laser applications
Resumo:
We present structural, optical and transport data on GaN samples grown by hybrid, two-step low temperature pulsed laser deposition. The band gap of samples with good crystallinity has been deduced from optical spectra. Large below gap band tails were observed. In samples with the lowest crystalline quality the PL spectra are quite dependent on spot laser incidence. The most intense PL lines can be attributed to excitons bounded to stacking faults. When the crystalline quality of the samples is increased the ubiquitous yellow emission band can be detected following a quenching process described by a similar activation energy to that one found in MOCVD grown samples. The samples with the highest quality present, besides the yellow band, show a large near band edge emission which peaked at 3.47 eV and could be observed up to room temperature. The large width of the NBE is attributed to effect of a wide distribution of band tail states on the excitons. Photoconductivity data supports this interpretation.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
A new Modular Marx Multilevel Converter, M(3)C, is presented. The M(3)C topology was developed based on the Marx Generator concept and can contribute to technological innovation for sustainability by enabling wind energy off-shore modular multilevel power switching converters with an arbitrary number of levels. This paper solves both the DC capacitor voltage balancing problem and modularity problems of multilevel converters, using a modified cell of a solid-state Marx modulator, previously developed by authors for high voltage pulsed power applications. The paper details the structure and operation of the M(3)C modules, and their assembling to obtain multilevel converters. Sliding mode control is applied to a M(3)C leg and the vector leading to automatic capacitor voltage equalization is chosen. Simulation results are presented to show the effectiveness of the proposed M(3)C topology.
Resumo:
This paper describes the operation of a solid-state series stacked topology used as a serial and parallel switch in pulsed power applications. The proposed circuit, developed from the Marx generator concept, balances the voltage stress on each series stacked semiconductor, distributing the total voltage evenly. Experimental results from a 10 kV laboratory series stacked switch, using 1200 V semiconductors in a ten stages solid-state series stacked circuit, are reported and discussed, considering resistive, capacitive and inductive type loads for high and low duty factor voltage pulse operation.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.
Resumo:
This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.
Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films
Resumo:
Self-assembled (0.65)BiFeO3-(0.35)CoFe2O4 (BFO-CFO) nanostructures were deposited on SrTiO3 (001) and (111) substrates by pulsed laser deposition at various temperatures from 500 to 800°C. The crystal phases and the lattice strain for the two different substrate orientations have been determined and compared. The films grow epitaxial on both substrates but separation of the spinel and perovskite crystallites, without parasitic phases, is only obtained for growth temperatures of around 600-650°C. The BFO crystallites are out-of-plane expanded on STO(001), whereas they are almost relaxed on (111). In contrast, CFO crystallites grow out-of-plane compressed on both substrates. The asymmetric behavior of the cell parameters of CFO and BFO is discussed on the basis of the role of the epitaxial stress caused by the substrate and the spinel-perovskite interfacial stress. It is concluded that interfacial stress dominates the elastic properties of CFO crystallites and thus it may play a fundamental on the interface magnetoelectric coupling in these nanocomposites.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The solution fluorescence of N-alkyl-2,3-naphthalimides (1-4) in polar protic and aprotic solvents was compared to the emission from solid samples resulting from the imide complexation with b-cyclodextrin or adsorption on the surface of microcrystalline cellulose. Solid samples of the inclusion complex 2,3-naphthalimides/b-cyclodextrin show maximum for fluorescence emission significantly different to the observed in methanolic solution. Beside this, a clear effect on the alkyl chain length could be observed for these samples which is probably due to differences in probe location inside the cyclodextrin cavity. The constancy for fluorescence quantum yield and fluorescence lifetime for the imides 1 - 4 adsorbed on microcrystalline cellulose suggests that, independently of the polarity of the solvent used for sample preparation, the probe is preferentially located on the cellulose surface. An increase of fluorescence quantum yield and fluorescence lifetime for solid samples, when compared to the values obtained in solution for the different solvents employed in this study (acetonitrile, methanol and water), is fully in accordance with a decrease of the probe mobility due to inclusion in b-cyclodextrin or to adsorption on cellulose.
Resumo:
In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.
Resumo:
In this work, Sr2FeMoO6 (SFMO) thin films were studied with the main focus on their magnetic and magneto-transport properties. The fabrication process of pulsed laser deposited SFMO films was first optimized. Then the effects of strain, film thickness and substrate were thoroughly investigated. In addition to these external factors, the effect of intrinsic defects on the magnetic properties of SFMO were also clarified. Secondly, the magnetoresistivity mechanims of SFMO films were studied and a semiempirical model of the temperature dependence of resistivity was introduced. The films were grown on single crystal substrates using a ceramic target made with sol-gel method. The structural characterization of the films were carried out with X-ray diffraction, atomic force microscopy, transmission electron microscopy and high kinetic energy photoelectron spectroscopy. The magnetic properties were measured with SQUID magnetometer and the magneto-transport properties by magnetometer with a resistivity option. SFMO films with the best combination of structural and magnetic properties were grown in Ar atmosphere at 1050 °C . Their magnetic properties could not be improved by the ex situ post-annealing treatments aside from the treatments in ultra-high vacuum conditions. The optimal film thickness was found to be around 150 nm and only small improvement in the magnetic properties with decreasing strain was observed. Instead, the magnetic properties were observed to be highly dependent on the choice of the substrate due to the lattice mismatch induced defects, which are best avoided by using the SrTiO3 substrate. The large difference in the Curie temperature and the saturation magnetization between the SFMO thin film and polycrystalline bulk samples was connected to the antisite disorder and oxygen vacancies. Thus, the Curie temperature of SFMO thin films could be improved by increasing the amount of oxygen vacancies for example with ultra-high vacuum treatments or improving the B-site ordering by further optimization of the deposition parameters. The magneto-transport properties of SFMO thin films do not follow any conventional models, but the temperature dependence of resistivity was succesfully described with a model of two spin channel system. Also, evidences that the resistivity-temperature behaviour of SFMO thin films is dominated by the structural defects, which reduce the band gap in the majority spin band were found. Moreover, the magnetic field response of the resistivity in SFMO thin films were found to be superposition of different mechanisms that seems to be related to the structural changes in the film.
Resumo:
Puolijohteiden yleistyttyä vuodesta 1948 alkaen, ovat elektroniset laitteet pienentyneet jatkuvasti tehojen kuitenkin kasvaessa. Kasvaneet tehotiheydet kuitenkin vaikeuttavat laitesuunnittelua, sillä puoljohdekomponenttien suorituskyvylle ja eliniälle on oleellista lämpötilojen ja lämpötilavaihteluiden minimointi. Perinteisen ilmajäähdytyksen lähestyessä rajojaan niin kokonaistehon kuin järkevän energiatehokkuudenkin suhteen, on parhaaksi seuraavaksi teknologiaksi ennustettu kaksifaasijäähdytystä, jonka suorituskyky ja energiatehokkuus ovat vaaditulla tasolla. Kaksifaasijäähdytyksen optimaaliselle toiminnalle tärkeää on hyvin suunniteltu ja tarkasti valmistettu lämmönsiirtopinta, jota kutsutaan mikrokanavistoksi. Pulssitettu laserkaiverrus on edistynyt valmistustekniikka, jonka tarkkuus ja luotettavuus sopisivat mikrokanavistojen valmistamiseen. Laserkaiverruksella saavutettavat lopputulokset vaihtelevat kuitenkin materiaalista riippuen ja kupari – jota käytetään yleisesti lämmönjohteena – on eräs huonoimmin lasertyöstöön reagoivista materiaaleista ja siksi on oleellista selvittää laser-kaiverruksen toimivuutta kuparisten mikrokanavistojen valmistuksessa. Pulssitetun laser-kaiverruksen eri variaatioista nanosekunti-luokan pulssinpituuksilla toimivat laitteet ovat jatkuvan tuotannon kannalta paras vaihtoehto niiden hyvän tuottavuuden, saatavuuden sekä kohtuullisen alkuinvestoinnin vuoksi. Käytännön kaiverruskokeiden perusteella selvisi, että menetelmä on laatunsa ja tarkkuutensa puolesta sopiva varsinaiseen tuotantoon. Kaiverruksen tehokkuus kuparia työstettäessä on kuitenkin ennakoituakin heikompi ja niin valmistus- kuin suunnitelu-prosessikin vaativat vielä jatkotutkimusta ja -kehitystä.