959 resultados para Pseudospin and spin symmetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular nanomagnets are spin clusters whose topology and magnetic interactions can be modulated at the level of the chemical synthesis. They are formed by a small number of transition metal ions coupled by the Heisenberg's exchange interactions. Each cluster is magnetically isolated from its neighbors by organic ligands, making each unit not interacting with the others. Therefore, we can investigate the magnetic properties of an isolated molecular nanomagnet by bulk measurements. The present thesis has been mostly devoted to the experimental investigation of the magnetic properties and spin dynamics of different classes of antiferromagnetic (AF) molecular rings. This study has been exploiting various techniques of investigations, such as Nuclear Magnetic Resonance (NMR), muon spin relaxation (muSR) and SQUiD magnetometry. We investigate the magnetic properties and the phonon-induced relaxation dynamics of the first regular Cr9 antiferromagnetic (AF) ring, which represents a prototype frustrated AF ring. The magnetically-open AF rings like Cr8Cd are model systems for the study of the microscopic magnetic behaviour of finite AF Heisenberg chains. In this type of system the different magnetic behaviour depends length and on the parity of the chain (odd or even). In order to study the local spin densities on the Cr sites, the Cr-NMR spectra was collected at low temperature. The experimental result confirm the theoretical predictions for the spin configuration. Finally, the study of Dy6, the first rare-earth based ring that has been ever synthesized, has been performed by AC-SQuID and muSR measurements. We found that the dynamics is characterized by more than one characteristic correlation time, whose values depend strongly on the applied field.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concepts of spin and pseudospin symmetries has been used as mere rhetorics to decorate the pseudoscalar potential [Chin. Phys. B 22 090301 (2013)]. It is also pointed out that a more complete analysis of the bound states of fermions in a pseudoscalar Cornell potential has already been published elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary electron donor in bacterial reaction centers is a dimer of bacteriochlorophyll a molecules, labeled L or M based on their proximity to the symmetry-related protein subunits. The electronic structure of the bacteriochlorophyll dimer was probed by introducing small systematic variations in the bacteriochlorophyll–protein interactions by a series of site-directed mutations that replaced residue Leu M160 with histidine, tyrosine, glutamic acid, glutamine, aspartic acid, asparagine, lysine, and serine. The midpoint potentials for oxidation of the dimer in the mutants showed an almost continuous increase up to ≈60 mV compared with wild type. The spin density distribution of the unpaired electron in the cation radical state of the dimer was determined by electron–nuclear–nuclear triple resonance spectroscopy in solution. The ratio of the spin density on the L side of the dimer to the M side varied from ≈2:1 to ≈5:1 in the mutants compared with ≈2:1 for wild type. The correlation between the midpoint potential and spin density distribution was described using a simple molecular orbital model, in which the major effect of the mutations is assumed to be a change in the energy of the M half of the dimer, providing estimates for the coupling and energy levels of the orbitals in the dimer. These results demonstrate that the midpoint potential can be fine-tuned by electrostatic interactions with amino acids near the dimer and show that the properties of the electronic structure of a donor or acceptor in a protein complex can be directly related to functional properties such as the oxidation–reduction midpoint potential.