979 resultados para Protozoa, Pathogenic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decline in viable numbers of Salmonella typhimurium, Yersinia enterocolitica and Listeria monocytogenes in beef cattle slurry is temperature-dependent; they decline more rapidly at 17-degrees-C than at 4-degrees-C. Mesophilic anaerobic digestion caused an initial rapid decline in the viable numbers of Escherichia coli, Salm. typhimurium, Y. enterocolitica and L. monocytogenes. This was followed by a period in which the viable numbers were not reduced by 90%. The T90 values of E. coli, Salm. typhimurium and Y. enterocolitica ranged from 0.7 to 0.9 d during batch digestion and 1.1 to 2-5 d during semi-continuous digestion. Listeria monocytogenes had a significantly higher mean T90 value during semi-continuous digestion (35.7 d) than batch digestion (12.3 d). Anaerobic digestion had little effect in reducing the viable numbers of Campylobacter jejuni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The survival of pathogenic bacteria was investigated during the operation of a full-scale anaerobic digester which was fed daily and operated at 28-degrees-C. The digester had a mean hydraulic retention time of 24 d. The viable numbers of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni were reduced during mesophilic anaerobic digestion. Escherichia coli had the smallest mean viable numbers at each stage of the digestion process. Its mean T90 value was 76-9 d. Yersinia enterocolitica was the least resistant to the anaerobic digester environment; its mean T90 value was 18.2 d. Campylobacter jejuni was the most resistant bacterium; its mean T90 value was 438.6 d. Regression analysis showed that there were no direct relationships between the slurry input and performance of the digester and the decline of pathogen numbers during the 140 d experimental period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In natural environments such as anaerobic digesters, bacteria are frequently subjected to the stress of nutrient fluxes because of the continual changes in the flow of nutrients, and to survive, they must be capable of adapting readily to nutrient changes. In this study, the metabolic activities of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes, and Campylobacter jejuni were studied within culture bags (Versapor-200 filters, 0.22-mu m pore size) in laboratory anaerobic digesters. The metabolic activity of these bacteria was indicated by their adenylate energy charge (EC) ratios and their ability to incorporate [H-3]thymidine, which was related to the respective changes in viable numbers within the culture bags during anaerobic digestion. Fluctuations in the adenylate EC ratios, the uptake of [H-3]thymidine, and the viable numbers of E. coli, S. typhimurium, Y. enterocolitica, and L. monocytogenes cells were probably due to constant changes in the amount of available nutrients within the anaerobic digesters. The viability of S. typhimurium increased quickly after a fresh supply of nutrients was added to the system as indicated by the uptake of [H-3]thymidine and an increase in the adenylate EC ratios. The viable numbers of E. coli, S. typhimurium, Y. enterocolitica, and L. monocytogenes organisms declined rapidly from 10(7) to 10(8) CFU/ml to 10(3) to 10(4) CFU/ml and remained at this level for an indefinite period. The decimal reduction time calculated during the period of exponential decline ranged from 0.8 to 1.2 days for these bacteria. C. jejuni had the greatest mean decimal reduction time value (3.6 days). This bacterium had adenylate EC ratios of less than 0.5 during anaerobic digestion, although the adenylate nucleotide concentrations in the cells were much greater than those in the other enteric cells. The results show that the enteric bacteria investigated probably exist in transient states between different stages of growth because of fluctuating nutrient levels during anaerobic digestion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two ‘putative virulence’ genes (eMLST) that provides improved high resolution
typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA1 clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA2 strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA1 and IA2 strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence indicating that O-antigen (O-ag) plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. In this review, we will discuss: (i) the work done on the genetics and biosynthesis of the O-ags in the genus Yersinia; (ii) the role of O-ag in virulence of these bacteria; (iii) the work done on regulation of the O-ag gene cluster expression and; (iv) the impact that the O-ag expression has on other bacterial surface and membrane components.