987 resultados para Prototype Design
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, the concept for a radio frequency identification (RFID) enabled student workbook is discussed and a prototype system developed. The workbook is a question-answer notebook in traditional paper format in which hand written solutions to student assignments are written. An embedded RFID tag in the workbook is then used for the student to store his/her solution to the attempted assignment questions at home. On entry to the classroom and once the questions have been attempted, an RFID reader in the classroom will retrieve the answers from the workbook, automatically collate the results and instantly provide a summary of these results for the individual student and the class as a whole. If problems are highlighted, the teacher can then investigate issues with individual students and review the answers provided in the workbook.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.
Resumo:
The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.
Resumo:
Infektiöse Komplikationen im Zusammenhang mit Implantaten stellen einen Großteil aller Krankenhausinfektionen dar und treiben die Gesundheitskosten signifikant in die Höhe. Die bakterielle Kolonisation von Implantatoberflächen zieht schwerwiegende medizinische Konsequenzen nach sich, die unter Umständen tödlich verlaufen können. Trotz umfassender Forschungsaktivitäten auf dem Gebiet der antibakteriellen Oberflächenbeschichtungen ist das Spektrum an wirksamen Substanzen aufgrund der Anpassungsfähigkeit und Ausbildung von Resistenzen verschiedener Mikroorganismen eingeschränkt. Die Erforschung und Entwicklung neuer antibakterieller Materialien ist daher von fundamentaler Bedeutung.rnIn der vorliegenden Arbeit wurden auf der Basis von Polymernanopartikeln und anorganischen/polymeren Verbundmaterialien verschiedene Systeme als Alternative zu bestehenden antibakteriellen Oberflächenbeschichtungen entwickelt. Polymerpartikel finden Anwendung in vielen verschiedenen Bereichen, da sowohl Größe als auch Zusammensetzung und Morphologie vielseitig gestaltet werden können. Mit Hilfe der Miniemulsionstechnik lassen sich u. A. funktionelle Polymernanopartikel im Größenbereich von 50-500 nm herstellen. Diese wurde im ersten System angewendet, um PEGylierte Poly(styrol)nanopartikel zu synthetisieren, deren anti-adhesives Potential in Bezug auf P. aeruginosa evaluiert wurde. Im zweiten System wurden sog. kontakt-aktive kolloide Dispersionen entwickelt, welche bakteriostatische Eigenschaften gegenüber S. aureus zeigten. In Analogie zum ersten System, wurden Poly(styrol)nanopartikel in Copolymerisation in Miniemulsion mit quaternären Ammoniumgruppen funktionalisiert. Als Costabilisator diente das zuvor quaternisierte, oberflächenaktive Monomer (2-Dimethylamino)ethylmethacrylat (qDMAEMA). Die Optimierung der antibakteriellen Eigenschaften wurde im nachfolgenden System realisiert. Hierbei wurde das oberflächenaktive Monomer qDMAEMA zu einem oberflächenaktiven Polyelektrolyt polymerisiert, welcher unter Anwendung von kombinierter Miniemulsions- und Lösemittelverdampfungstechnik, in entsprechende Polyelektrolytnanopartikel umgesetzt wurde. Infolge seiner oberflächenaktiven Eigenschaften, ließen sich aus dem Polyelektrolyt stabile Partikeldispersionen ohne Zusatz weiterer Tenside ausbilden. Die selektive Toxizität der Polyelektrolytnanopartikel gegenüber S. aureus im Unterschied zu Körperzellen, untermauert ihr vielversprechendes Potential als bakterizides, kontakt-aktives Reagenz. rnAufgrund ihrer antibakteriellen Eigenschaften wurden ZnO Nanopartikel ausgewählt und in verschiedene Freisetzungssysteme integriert. Hochdefinierte eckige ZnO Nanokristalle mit einem mittleren Durchmesser von 23 nm wurden durch thermische Zersetzung des Precursormaterials synthetisiert. Durch die nachfolgende Einkapselung in Poly(L-laktid) Latexpartikel wurden neue, antibakterielle und UV-responsive Hybridnanopartikel entwickelt. Durch die photokatalytische Aktivierung von ZnO mittels UV-Strahlung wurde der Abbau der ZnO/PLLA Hybridnanopartikel signifikant von mehreren Monaten auf mehrere Wochen verkürzt. Die Photoaktivierung von ZnO eröffnet somit die Möglichkeit einer gesteuerten Freisetzung von ZnO. Im nachfolgenden System wurden dünne Verbundfilme aus Poly(N-isopropylacrylamid)-Hydrogelschichten mit eingebetteten ZnO Nanopartikeln hergestellt, die als bakterizide Oberflächenbeschichtungen gegen E. coli zum Einsatz kamen. Mit minimalem Gehalt an ZnO zeigten die Filme eine vergleichbare antibakterielle Aktivität zu Silber-basierten Beschichtungen. Hierbei lässt sich der Gehalt an ZnO relativ einfach über die Filmdicke einstellen. Weiterhin erwiesen sich die Filme mit bakteriziden Konzentrationen an ZnO als nichtzytotoxisch gegenüber Körperzellen. Zusammenfassend wurden mehrere vielversprechende antibakterielle Prototypen entwickelt, die als potentielle Implantatbeschichtungen auf die jeweilige Anwendung weiterhin zugeschnitten und optimiert werden können.
Resumo:
Cloud services are becoming ever more important for everyone's life. Cloud storage? Web mails? Yes, we don't need to be working in big IT companies to be surrounded by cloud services. Another thing that's growing in importance, or at least that should be considered ever more important, is the concept of privacy. The more we rely on services of which we know close to nothing about, the more we should be worried about our privacy. In this work, I will analyze a prototype software based on a peer to peer architecture for the offering of cloud services, to see if it's possible to make it completely anonymous, meaning that not only the users using it will be anonymous, but also the Peers composing it will not know the real identity of each others. To make it possible, I will make use of anonymizing networks like Tor. I will start by studying the state of art of Cloud Computing, by looking at some real example, followed by analyzing the architecture of the prototype, trying to expose the differences between its distributed nature and the somehow centralized solutions offered by the famous vendors. After that, I will get as deep as possible into the working principle of the anonymizing networks, because they are not something that can just be 'applied' mindlessly. Some de-anonymizing techniques are very subtle so things must be studied carefully. I will then implement the required changes, and test the new anonymized prototype to see how its performances differ from those of the standard one. The prototype will be run on many machines, orchestrated by a tester script that will automatically start, stop and do all the required API calls. As to where to find all these machines, I will make use of Amazon EC2 cloud services and their on-demand instances.
Resumo:
A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes over flow conditions similar to that which would be experienced in the actual combustor. The results of this experiment were used to select the desired geometric parameters for the proposed final injector design and a CAD model was generated. Eventually, the new injector will be fabricated and tested to provide final validation of the design prior to use in the combustion test apparatus.
Resumo:
Solar research is primarily conducted in regions with consistent sunlight, severely limiting research opportunities in many areas. Unfortunately, the unreliable weather in Lewisburg, PA, can prove difficult for such testing to be conducted. As such, a solar simulator was developed for educational purposes for the Mechanical Engineering department at Bucknell University. The objective of this work was to first develop a geometric model to evaluate a one sun solar simulator. This was intended to provide a simplified model that could be used without the necessity of expensive software. This model was originally intended to be validated experimentally, but instead was done using a proven ray tracing program, TracePro. Analyses with the geometrical model and TracePro demonstrated the influence the geometrical properties had results, specifically the reflector (aperture) diameter and the rim angle. Subsequently, the two were approaches were consistent with one another for aperture diameters 0.5 m and larger, and for rim angles larger than 45°. The constructed prototype, that is currently untested, was designed from information provided by the geometric model, includes a metal halide lamp with a 9.5 mm arc diameter and parabolic reflector with an aperture diameter of 0.631 meters. The maximum angular divergence from the geometrical model was predicted to be 30 mRadians. The average angular divergence in TraceProof the system was 19.5 mRadians, compared to the sun’s divergence of 9.2 mRadians. Flux mapping in TracePro showed an intensity of 1000 W/m2 over the target plane located 40 meters from the lamp. The error between spectrum of the metal halide lamp and the solar spectrum was 10.9%, which was found by comparing their respective Plank radiation distributions. The project did not satisfy the original goal of matching the angular divergence of sunlight, although the system could still to be used for optical testing. The geometric model indicated performance in this area could be improved by increasing the diameter of the reflector, as well as decreasing the source diameter. Although ray tracing software provides more information to analyze the simulator system, the geometrical model is adequate to provide enough information to design a system.
Resumo:
Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.
Resumo:
During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.
Resumo:
The usage of social media in leisure time settings has become a prominent research topic. However, less research has been done on the design of social media in collaboration settings. In this study, we investigate how social media can support asynchronous collaboration in virtual teams and specifically how they can increase activity awareness. On the basis of an open source social networking platform, we present two prototype designs: a standard platform with basic support for information processing, communication and process – as suggested by Zigurs and Buckland (1998) – and an advanced platform with additional support for activity awareness via specialfeed functions. We argue that the standard platform already conveys activity awareness to a certain extent, however, that this awareness can be increased even more by the feeds in the advanced platform. Both prototypes are tested in a field experiment and evaluated with respect to their impact on perceived activity awareness, coordination and satisfaction. We show that the advanced design increases coordination and satisfaction through increased perceived activity awareness.
Resumo:
Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^