956 resultados para Proteins - Analysis
Resumo:
We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.
Resumo:
Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.
Resumo:
A total of 106 potential duplicate cases involved 277 accessions were detected on the basis of passport data in the durum wheat collection maintained in the CRF-INIA. Similarity between accessions was measured by agro-morphological traits. The 90% of the agro-morphological duplication were verified with gliadin proteins, allowing identification of similar material with greater refinement than agro-morphological data. However, the results indicated not to decide for rationalisation only on the basis of molecular data.
Resumo:
A total of 106 potential duplicate cases involved 277 accessions were detected on the basis of passport data in the durum wheat collection maintained in the CRF-INIA. Similarity between accessions was measured by agro-morphological traits. The 90% of the agro-morphological duplication were verified with gliadin proteins, allowing identification of similar material with greater refinement than agro-morphological data. However, the results indicated not to decide for rationalisation only on the basis of molecular data
Resumo:
Sequence comparisons of genomes or expressed sequence tags (ESTs) from related organisms provide insight into functional conservation and diversification. We compare the sequences of ESTs from the male accessory gland of Drosophila simulans to their orthologs in its close relative Drosophila melanogaster, and demonstrate rapid divergence of many of these reproductive genes. Nineteen (∼11%) of 176 independent genes identified in the EST screen contain protein-coding regions with an excess of nonsynonymous over synonymous changes, suggesting that their divergence has been accelerated by positive Darwinian selection. Genes that encode putative accessory gland-specific seminal fluid proteins had a significantly elevated level of nonsynonymous substitution relative to nonaccessory gland-specific genes. With the 57 new accessory gland genes reported here, we predict that ∼90% of the male accessory gland genes have been identified. The evolutionary EST approach applied here to identify putative targets of adaptive evolution is readily applicable to other tissues and organisms.
Resumo:
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.
Resumo:
Green fluorescent protein (GFP) is widely used as a reporter gene in both prokaryotes and eukaryotes. However, the fluorescence levels of wild-type GFP (wtGFP) are not bright enough for fluorescence-activated cell sorting or flow cytometry. Several GFP variants were generated that are brighter or have altered excitation spectra when expressed in prokaryotic cells. We engineered two GFP genes with different combinations of these mutations, GFP(S65T,V163A) termed GFP-Bex1, and GFP(S202F,T203I,V163A) termed GFP-Vex1. Both show enhanced brightness and improved signal-to-noise ratios when expressed in mammalian cells and appropriately excited, compared with wtGFP. Each mutant retains only one of the two excitation peaks of the wild-type protein. GFP-Bex1 excites at 488 nm (blue) and GFP-Vex1 excites at 406 nm (violet), both of which are available laser lines. Excitation at these wavelengths allows for the independent analyses of these mutants by fluorescence-activated cell sorting, permitting simultaneous, quantitative detection of expression from two different genes within single mammalian cells.
Resumo:
An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.
Sequence similarity analysis of Escherichia coli proteins: functional and evolutionary implications.
Resumo:
A computer analysis of 2328 protein sequences comprising about 60% of the Escherichia coli gene products was performed using methods for database screening with individual sequences and alignment blocks. A high fraction of E. coli proteins--86%--shows significant sequence similarity to other proteins in current databases; about 70% show conservation at least at the level of distantly related bacteria, and about 40% contain ancient conserved regions (ACRs) shared with eukaryotic or Archaeal proteins. For > 90% of the E. coli proteins, either functional information or sequence similarity, or both, are available. Forty-six percent of the E. coli proteins belong to 299 clusters of paralogs (intraspecies homologs) defined on the basis of pairwise similarity. Another 10% could be included in 70 superclusters using motif detection methods. The majority of the clusters contain only two to four members. In contrast, nearly 25% of all E. coli proteins belong to the four largest superclusters--namely, permeases, ATPases and GTPases with the conserved "Walker-type" motif, helix-turn-helix regulatory proteins, and NAD(FAD)-binding proteins. We conclude that bacterial protein sequences generally are highly conserved in evolution, with about 50% of all ACR-containing protein families represented among the E. coli gene products. With the current sequence databases and methods of their screening, computer analysis yields useful information on the functions and evolutionary relationships of the vast majority of genes in a bacterial genome. Sequence similarity with E. coli proteins allows the prediction of functions for a number of important eukaryotic genes, including several whose products are implicated in human diseases.
Resumo:
Expansins are unusual proteins discovered by virtue of their ability to mediate cell wall extension in plants. We identified cDNA clones for two cucumber expansins on the basis of peptide sequences of proteins purified from cucumber hypocotyls. The expansin cDNAs encode related proteins with signal peptides predicted to direct protein secretion to the cell wall. Northern blot analysis showed moderate transcript abundance in the growing region of the hypocotyl and no detectable transcripts in the nongrowing region. Rice and Arabidopsis expansin cDNAs were identified from collections of anonymous cDNAs (expressed sequence tags). Sequence comparisons indicate at least four distinct expansin cDNAs in rice and at least six in Arabidopsis. Expansins are highly conserved in size and sequence (60-87% amino acid sequence identity and 75-95% similarity between any pairwise comparison), and phylogenetic trees indicate that this multigene family formed before the evolutionary divergence of monocotyledons and dicotyledons. Sequence and motif analyses show no similarities to known functional domains that might account for expansin action on wall extension. A series of highly conserved tryptophans may function in expansin binding to cellulose or other glycans. The high conservation of this multigene family indicates that the mechanism by which expansins promote wall extensin tolerates little variation in protein structure.
Resumo:
The las and rhl quorum sensing (QS) systems regulate the expression of several genes in response to cell density changes in Pseudomonas aeruginosa. Many of these genes encode surface-associated or secreted virulence factors. Proteins from stationary phase culture supernatants were collected from wild-type and P. aeruginosa PAO1 mutants deficient in one or more of the lasRI, rhIRI and vfr genes and analysed using two-dimensional gel electrophoresis. All mutants released significantly lower amounts of protein than the wild-type. Protein spot patterns from each strain were compared using image analysis and visible spot differences were identified using mass spectrometry. Several previously unknown OS-regulated proteins were characterized, including an aminopeptidase (PA2939), an endoproteinase (PrpL) and a unique 'hypothetical' protein (PA0572), which could not be detected in the culture supernatants of Delta/as mutants, although they were unaffected in Deltarhl mutants. Chitin-binding protein (CbpD) and a hypothetical protein (PA4944) with similarity to host factor I (HF-1) could not be detected when any of the lasRI or rhIRI genes were disrupted. Fourteen proteins were present at significantly greater levels in the culture supernatants of OS mutants, suggesting that QS may also negatively control the expression of some genes. Increased levels of two-partner secretion exoproteins (PA0041 and PA4625) were observed and may be linked to increased stability of their cognate transporters in a CS-defective background. Known QS-regulated extracellular proteins, including elastase (lasB), LasA protease (lasA) and alkaline metalloproteinase (aprA) were also detected.
Resumo:
The chromodomain is 40-50 amino acids in length and is conserved in a wide range of chromatic and regulatory proteins involved in chromatin remodeling. Chromodomain-containing proteins can be classified into families based on their broader characteristics, in particular the presence of other types of domains, and which correlate with different subclasses of the chromodomains themselves. Hidden Markov model (HMM)-generated profiles of different subclasses of chromodomains were used here to identify sequences encoding chromodomain-containing proteins in the mouse transcriptome and genome. A total of 36 different loci encoding proteins containing chromodomains, including 17 novel loci, were identified. Six of these loci (including three apparent pseudogenes, a novel HP1 ortholog, and two novel Msl-3 transcription factor-like proteins) are not present in the human genome, whereas the human genome contains four loci (two CDY orthologs and two apparent CDY pseuclogenes) that are not present in mouse. A number of these loci exhibit alternative splicing to produce different isoforms, including 43 novel variants, some of which lack the chromodomain. The likely functions of these proteins are discussed in relation to the known functions of other chromodomain-containing proteins within the same family.