504 resultados para Prosimian Primate
Resumo:
Seasonal heterothermy—an orchestrated set of extreme physiological responses—is directly responsible for the over-winter survival of many mammalian groups living in seasonal environments. Historically, it was thought that the use of seasonal heterothermy (i.e. daily torpor and hibernation) was restricted to cold-adapted species; it is now known that such thermoregulatory strategies are used by more species than previously appreciated, including many tropical species. The dwarf and mouse lemurs (family Cheirogaleidae) are among the few primates known to use seasonal heterothermy to avoid Madagascar’s harsh and unpredictable environments. These primates provide an ideal study system for investigating a common mechanism of mammalian seasonal heterothermy. The overarching theme of this dissertation is to understand both the intrinsic and extrinsic drivers of heterothermy in three species of the family Cheirogaleidae. By using transcriptome sequencing to characterize gene expression in both captive and natural settings, we identify unique patterns of differential gene expression that are correlated with extreme changes in physiology in two species of dwarf lemurs: C. medius under captive conditions at the Duke Lemur Center and C. crossleyi studied under field conditions in Madagascar. Genes that are differentially expressed appear to be critical for maintaining the health of these animals when they undergo prolonged periods of metabolic depression concurrent with the hibernation phenotype. Further, a comparative analysis of previously studied mammalian heterotherms identifies shared genetic mechanisms underlying the hibernation phenotype across the phylogeny of mammals. Lastly, conducting a diet manipulation study with a captive colony of mouse lemurs (Microcebus murinus) at the Duke Lemur Center, we investigated the degree to which dietary effects influence torpor patterns. We find that tropical primate heterotherms may be exempt from the traditional paradigms governing cold-adapted heterothermy, having evolved different dietary strategies to tolerate circadian changes in body temperature.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
Making decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
The Early Miocene Napak XV locality (ca 20.5 Ma), Uganda, has yielded an interesting assemblage of fossils, including the very well represented amphicyonid Hecubides euryodon. The remarkable find of a nearly complete mandible, unfortunately with poorly preserved dentition, together with new dental remains allow us to obtain a better idea about the morphology and variability of this species. Additionally, we describe a newly discovered mandible of Hecubides euryodon from the Grillental-VI locality (Sperrgebiet, Namibia), which is the most complete and diagnostic Amphicyonidae material found in this area. Comparisons with Cynelos lemanensis from Saint Gérand le Pouy (France), the type locality, and with an updated sample of the species of amphicyonids described in Africa leads us to validate the genus Hecubides. Hecubides would be phylogenetically related to the medium and large size species of Amphicyonidae from Africa, most of them now grouped into the genera Afrocyon and Myacyon, both endemic to this continent.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
L’élucidation de la position qu’occupent les projections sérotoninergique (5-HT), cholinergique (ACh) et dopaminergique (DA) du tronc cérébral dans l’organisation anatomofonctionelle du globus pallidus externe (GPe) et interne (GPi) au sein des ganglions de la base chez le primate est primordiale à la compréhension de ce système neuronal hautement complexe impliqué dans le contrôle du comportement moteur. Les travaux de recherche consolidés dans la présente thèse rapportent les résultats principalement obtenus chez le singe écureuil (Saimiri sciureus) à l’aide de marquages immunohistochimiques et de quantifications stéréologiques servant à évaluer la distribution régionale et les caractéristiques ultrastructurales des varicosités axonales 5-HT, ACh et DA observées dans le pallidum. Nos données ont permis l’éloboration d’un nouveau modèle du neurone pallidal en tenant compte de la hiérarchie et des caractéristiques neurochimiques de ses entrées synaptiques. Ainsi, l’analyse quantitative en microscopie optique révèle que le GPe et le GPi reçoivent des innervations 5-HT, ACh et DA de densités variables et distribuées de façon hétérogène. Plus particulièrement, le GPe est innervé par 600 000 varicosités 5-HT/mm3 de tissu, 500 000 varicosités ACh/mm3 et 170 000 varicosités DA/mm3. En revanche, le GPi reçoit 600 000 varicosités 5-HT/mm3, 250 000 varicosités ACh/mm3 et 190 000 varicosités DA/mm3. De plus, la 5-HT, l’ACh et la DA ciblent préférentiellement les secteurs correspondant aux territoires fonctionnels associatifs et limbiques du pallidum, suggérant un rôle de ces projections dans la planification du comportement moteur ainsi que dans la régulation de l’attention et de l’humeur. Nos analyses en microscopie électronique révèlent que très peu de ces varicosités axonales établissent un contact synaptique, puisque plus de 70% des varicosités 5-HT, ACh et DA sont complètement dépouvues de jonction synaptique. Ainsi, bien que la 5-HT, l’ACh et la DA seraient en mesure de moduler directement les neurones pallidaux grâce à la transmission synaptique, leur plus grande influence s’opérerait par la transmission volumique, permettant d’influencer à la fois les neurones pallidaux et leurs afférences, principalement du striatum et noyau subthalamique. L’ensemble de ces résultats indique que les projections 5-HT, ACh et DA du tronc cérébral agissent de concert avec les afférences plus robustes en provenance du striatum et du noyau subthalamique. Ces nouvelles données neuroanatomiques positionnent le tronc cérébral en tant qu’acteur important dans l’organisation anatomique et fonctionnelle du pallidum chez le primate et doivent être prises en considération dans l’élaboration de nouvelles approches thérapeutiques visant à contrer les processus neurodégénératifs qui affectent les ganglions de la base, tel que la maladie de Parkinson.
Resumo:
The cranial base, composed of the midline and lateral basicranium, is a structurally important region of the skull associated with several key traits, which has been extensively studied in anthropology and primatology. In particular, most studies have focused on the association between midline cranial base flexion and relative brain size, or encephalization. However, variation in lateral basicranial morphology has been studied less thoroughly. Platyrrhines are a group of primates that experienced a major evolutionary radiation accompanied by extensive morphological diversification in Central and South America over a large temporal scale. Previous studies have also suggested that they underwent several evolutionarily independent processes of encephalization. Given these characteristics, platyrrhines present an excellent opportunity to study, on a large phylogenetic scale, the morphological correlates of primate diversification in brain size. In this study we explore the pattern of variation in basicranial morphology and its relationship with phylogenetic branching and with encephalization in platyrrhines. We quantify variation in the 3D shape of the midline and lateral basicranium and endocranial volumes in a large sample of platyrrhine species, employing high-resolution CT-scans and geometric morphometric techniques. We investigate the relationship between basicranial shape and encephalization using phylogenetic regression methods and calculate a measure of phylogenetic signal in the datasets. The results showed that phylogenetic structure is the most important dimension for understanding platyrrhine cranial base diversification; only Aotus species do not show concordance with our molecular phylogeny. Encephalization was only correlated with midline basicranial flexion, and species that exhibit convergence in their relative brain size do not display convergence in lateral basicranial shape. The evolution of basicranial variation in primates is probably more complex than previously believed, and understanding it will require further studies exploring the complex interactions between encephalization, brain shape, cranial base morphology, and ecological dimensions acting along the species divergence process.
Resumo:
O objetivo deste ensaio é refletir acerca da relação entre o primado da forma em nossa sociedade, que se expressa também nos âmbitos políticos e educacionais, e a formação de indivíduos pouco diferençados, no que se refere à sua sensibilidade, percepção e pensamento; tem como hipótese que a ênfase na forma, em diversos domínios sociais, em detrimento do conteúdo específico ao qual deveria se vincular contribui com a formação de indivíduos que têm dificuldades de se identificarem entre si e, por isso, de se desenvolver, sendo propensos à frieza, a uma ausência de percepção das contradições e conflitos sociais e a um pensamento basicamente adaptativo. Essa reflexão é desenvolvida tendo como referência obras de pensadores que constituíram a denominada Escola de Frankfurt, tais como T. W. Adorno, M. Horkheimer e H. Marcuse, e a Psicanálise Freudiana.
Resumo:
An adult female red-faced black spider monkey (Ateles paniscus), housed for 2 years in the Parque Estoril Zoo in Sao Paulo, Brazil, showed apathy. Clinical examination revealed discrete emaciation, swelling and induration of lymph nodes, and presence of a mass in the abdominal cavity. Therapies with enrofloxacin, azithromycin, and ceftiofur were ineffective. The animal died after 6 months. Necropsy and histopathology confirmed granulommas in lymph nodes, parietal and visceral pleura, lungs, liver, spleen, and kidneys. Acid-fast bacilli were isolated and identified as Mycobacterium tuberculosis by polymerase chain reaction restriction analysis and Spoligotyping techniques. The zoo personnel and other animals that had had contact with the infected primate were negative to tuberculosis diagnostic procedures, such as sputum exam (baciloscopy) and thorax radiography. It was impossible to determine whether the infection occurred before or after the arrival of the animal to the Parque Estoril Zoo. This is the first report of M. tuberculosis infection in Ateles paniscus, a neotropical primate.
Resumo:
Yellow fever virus (YFV) was isolated from Haemagogus leucocelaenus mosquitoes during an epizootic in 2001 in the Rio Grande do Sul State in southern Brazil In October 2008 a yellow fever outbreak was reported there with nonhuman primate deaths and human cases This latter outbreak led to intensification of surveillance measures for early detection of YFV and support for vaccination programs We report entomologic surveillance in 2 municipalities that recorded nonhuman primate deaths Mosquitoes were collected at ground level identified and processed for virus isolation and molecular analyses Eight YFV strains were isolated (7 from pools of Hg leucocelaenus mosquitoes and another from Aedes serratus mosquitoes) 6 were sequenced and they grouped in the YFV South American genotype I The results confirmed the role of Hg leucocelaenus mosquitoes as the main YFV vector in southern Brazil and suggest that Ae serratus mosquitoes may have a potential role as a secondary vector
Resumo:
Serpentine receptors comprise a large family of membrane receptors distributed over diverse organisms, such as bacteria, fungi, plants and all metazoans. However, the presence of serpentine receptors in protozoan parasites is largely unknown so far. In the present study we performed a genome-wide search for proteins containing seven transmembrane domains (7TM) in the human malaria parasite Plasmodium falciparum and identified four serpentine receptor-like proteins. These proteins, denoted PfSR1, PfSR10, PfSR12 and PfSR25, show membrane topologies that resemble those exhibited by members belonging to different families of serpentine receptors. Expression of the pfsrs genes was detected by Real Time PCR in P. falciparum intraerythrocytic stages, indicating that they potentially code for functional proteins. We also found corresponding homologues for the PfSRs in five other Plasmodium species, two primate and three rodent parasites. PfSR10 and 25 are the most conserved receptors among the different species, while PfSR1 and 12 are more divergent. Interestingly, we found that PfSR10 and PfSR12 possess similarity to orphan serpentine receptors of other organisms. The identification of potential parasite membrane receptors raises a new perspective for essential aspects of malaria parasite host cell infection.
Resumo:
Objective. Circumstantial evidence links retroviruses (RVs) with human autoimmune diseases, The aim of the present study was to obtain direct evidence of RV gene expression in rheumatoid arthritis (RA). Methods. Synovial samples were obtained from patients with RA, patients with osteoarthritis (OA), and normal control subjects, Reverse transcription-polymerase chain reaction (RT-PCR) was performed using synovial RNA and primers to conserved sequences in the polymerase (pol) genes of known RVs. Results. PCR products (n = 857) were cloned and sequenced, Multiple pol transcripts, many with open reading frames, were expressed in every sample, Sequences were aligned and classified into 6 families (F1-F6) that contained 33 groups of known and unknown endogenous RVs (ERVs), each distinguished by a specific, deduced peptide motif, The frequency of sequences in each family was similar between RA, OA, and normal synovial tissue, but differed significantly in RA synovial fluid cells, F1 sequences (undefined, but related to murine and primate type C RVs) were lower in frequency, F2 (ERV-9-related), F4 (HERV-K-related), and F6 (HERV-L-related) sequences were higher in frequency, and F3 (RTVL-H-related) sequences were not detected, in the RA synovial fluid cells compared with the RA synovial tissues. Conclusion. Multiple ERVs are expressed in normal and diseased synovial compartments, but specific transcripts can be differentially expressed in RA.
Resumo:
Alouatta guariba clamitans (brown howler monkey) is an endemic primate from the southeastern Brazil tropical forests, classified as near threatened by the IUCN Red List 2007. The genus Aloualta is one of the most difficult New World monkeys to breed and rear in captivity. In this study we examined the macroscopic and histological aspects of the female genital tract of wild brown howler monkeys to provide baseline information for future reproduction research. The anatomical relationship between the vagina, uterus, broad ligament, oviducts and ovaries are those of a typical primate reproductive tract. The fundic portion of the uterus is globoid, the cervix is well developed, which confers to the uterus an elongated shape, and the vagina is a long flattened channel. Histological analysis conducted in females in the follicular phase revealed large quantities of interstitial luteinized tissue in the ovaries, a stratified nonkeratinized vaginal epithelium, lack of glands in the vaginal mucosa and simple tubular endometrial glands. The observed anatomical features should be considered in the adaptation and application of assisted reproductive techniques aimed at improving captive reproduction for species conservation. Am. J. Primatol. 71:145-152, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Saimiri sciureus is one of the smallest Cebidae native of Amazon region and also found at the biological reserve of northeast Atlantic forest. It is an omnivore animal, with diversified diet that directly influences the lingual mucosa, which includes certain types of papillae with different organization levels. The present study attempted to describe the morphological and ultrastructure aspects of the dorsal surface of the S. sciureus. Five tongues of de S. sciureus were analyzed from three males and two females who died from natural causes and were obtained from breeding colonies of CENP-Ananindeua-PA. Main macroscopic features were a general triangular shape with a craniocaudal elongation pointed apex. Tissue samples-apex, body, and root of tongue-were fixed in modified Karnovsky solution, following standard scanning protocol, mounted in stubs, coated by gold, and analyzed by Scanning Electron Macroscopy (SEM). Four types of papillae were described: filiform (along all tissue extension with 154 mu m of diameter), fungiform (along all tissue extension with 272 mu m of diameter), vallate [just three units in caudal (dorsal) portion with 830 mu m of diameter] and foliate (one pair at caudolateral surface with similar to 13 projections and 3000 mu m in length). Data analysis indicates that the distribution and ultra structural morphology of the S. sciureus lingual papillae are some similar to other primates. Microsc. Res. Tech. 74:484-487, 2011. (C) 2010 Wiley-Liss, Inc.