1000 resultados para Propietats dels materials
Resumo:
We have studied the effects of rapid thermal annealing at 1300¿°C on GaN epilayers grown on AlN buffered Si(111) and on sapphire substrates. After annealing, the epilayers grown on Si display visible alterations with craterlike morphology scattered over the surface. The annealed GaN/Si layers were characterized by a range of experimental techniques: scanning electron microscopy, optical confocal imaging, energy dispersive x-ray microanalysis, Raman scattering, and cathodoluminescence. A substantial Si migration to the GaN epilayer was observed in the crater regions, where decomposition of GaN and formation of Si3N4 crystallites as well as metallic Ga droplets and Si nanocrystals have occurred. The average diameter of the Si nanocrystals was estimated from Raman scattering to be around 3¿nm. Such annealing effects, which are not observed in GaN grown on sapphire, are a significant issue for applications of GaN grown on Si(111) substrates when subsequent high-temperature processing is required.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Resumo:
The occurrence of heterostructures of cubic silicon/hexagonal silicon as disks defined along the nanowire (111) growth direction is reviewed in detail for Si nanowires obtained using Cu as catalyst. Detailed measurements on the structural properties of both semiconductor phases and their interface are presented. We observe that during growth, lamellar twinning on the cubic phase along the (111) direction is generated. Consecutive presence of twins along the (111) growth direction was found to be correlated with the origin of the local formation of the hexagonal Si segments along the nanowires, which define quantum wells of hexagonal Si diamond. Finally, we evaluate and comment on the consequences of the twins and wurtzite in the final electronic properties of the wires with the help of the predicted energy band diagram.
Resumo:
En este trabajo se presenta un estudio detallado de los procesos implicados en la sulfurización de capas metálicas de Cu-In para la fabricación de células solares de CuInS2. Con este objeto, se ha desarrollado un experimento de sulfurización parcial de las capas, que han sido sometidas posteriormente a un tratamiento de selenización. El estudio de estas estructuras mediante Espectroscopía Raman y Espectroscopía de Electrones Auger (AES) ha permitido conocer algunos de los detalles de la reacción química, en concreto la identificación del frente de crecimiento de la reacción de sulfurización. Paralelamente, se ha desarrollado un sistema experimental que ha hecho posible investigar in-situ la reacción de sulfurización por Espectroscopía Raman, lo cual ha permitido un seguimiento preciso de la evolución estructural del material durante el proceso. Los resultados experimentales demuestran que la reacción de sulfurización se inicia en la superficie de la capa, dando lugar a la formación de CuInS2, coexistiendo dos estructuras cristalinas polimórficas (calcopirita y orden catiónico CuAu). Posteriormente la reacción química continúa asistida por la difusión de los metales hacia la superficie, que reaccionan con la atmósfera de azufre, de forma simultánea se produce una transformación de la fase CuAu del compuesto en la estructura calcopirita.
Resumo:
A deep understanding of the recombination dynamics of ZnO nanowires NWs is a natural step for a precise design of on-demand nanostructures based on this material system. In this work we investigate the influence of finite-size on the recombination dynamics of the neutral bound exciton around 3.365 eV for ZnO NWs with different diameters. We demonstrate that the lifetime of this excitonic transition decreases with increasing the surface-to-volume ratio due to a surface induced recombination process. Furthermore, we have observed two broad transitions around 3.341 and 3.314 eV, which were identified as surface states by studying the dependence of their life time and intensitiy with the NWs dimensions.
Resumo:
We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles.
Resumo:
We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.
Resumo:
We show that the magnetoelastic coupling between the magnetization and the amplitude of a short wavelength phonon enables the existence of a first order premartensitic transition from a bcc to a micromodulated phase in Ni2MnGa. Such a magnetoelastic coupling has been experimentally evidenced by ac susceptibility and ultrasonic measurements under an applied magnetic field. A latent heat around 9 J/mol has been measured using a highly sensitive calorimeter. This value is in very good agreement with the value predicted by a proposed model.
Resumo:
Acoustic emission avalanche distributions are studied in different alloy systems that exhibit a phase transition from a bcc to a close-packed structure. After a small number of thermal cycles through the transition, the distributions become critically stable (exhibit power-law behavior) and can be characterized by an exponent alpha. The values of alpha can be classified into universality classes, which depend exclusively on the symmetry of the resulting close-packed structure.
Resumo:
We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0 T as a function of interdot distance. A slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2 meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit.
Resumo:
The significance of thermal fluctuations in nucleation in structural first-order phase transitions has been examined. The prototypical case of martensitic transitions has been experimentally investigated by means of acoustic emission techniques. We propose a model based on the mean first-passage time to account for the experimental observations. Our study provides a unified framework to establish the conditions for isothermal and athermal transitions to be observed.
Resumo:
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
Resumo:
The elastocaloric effect in the vicinity of the martensitic transition of a Cu-Zn-Al single crystal has been studied by inducing the transition by strain or stress measurements. While transition trajectories show significant differences, the entropy change associated with the whole transformation (DeltaSt) is coincident in both kinds of experiments since entropy production is small compared to DeltaSt. The values agree with estimations based on the Clausius-Clapeyron equation. The possibility of using these materials for mechanical refrigeration is also discussed.
Resumo:
We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is considered to enter through two different viscosities in two perpendicular directions can be mapped to a twofold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with the phase-field approach to find and characterize a transition between tip splitting and side branching as a function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the experimentally observed (reentrant) transition as temperature and applied pressure are varied. Our observations are also consistent with previous experimental evidence in viscous fingering within an etched cell and simulations of solidification.