849 resultados para Propagation prediction models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to estimate the safety impact of roadway interventions engineers need to collect, analyze, and interpret the results of carefully implemented data collection efforts. The intent of these studies is to develop Accident Modification Factors (AMF's), which are used to predict the safety impact of various road safety features at other locations or in upon future enhancements. Models are typically estimated to estimate AMF's for total crashes, but can and should be estimated for crash outcomes as well. This paper first describes data collected with the intent estimate AMF's for rural intersections in the state of Georgia within the United Sates. Modeling results of crash prediction models for the crash outcomes: angle, head-on, rear-end, sideswipe (same direction and opposite direction) and pedestrian-involved crashes are then presented and discussed. The analysis reveals that factors such as the Annual Average Daily Traffic (AADT), the presence of turning lanes, and the number of driveways have a positive association with each type of crash, while the median width and the presence of lighting are negatively associated with crashes. The model covariates are related to crash outcome in different ways, suggesting that crash outcomes are associated with different pre-crash conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many applications, e.g., bioinformatics, web access traces, system utilisation logs, etc., the data is naturally in the form of sequences. People have taken great interest in analysing the sequential data and finding the inherent characteristics or relationships within the data. Sequential association rule mining is one of the possible methods used to analyse this data. As conventional sequential association rule mining very often generates a huge number of association rules, of which many are redundant, it is desirable to find a solution to get rid of those unnecessary association rules. Because of the complexity and temporal ordered characteristics of sequential data, current research on sequential association rule mining is limited. Although several sequential association rule prediction models using either sequence constraints or temporal constraints have been proposed, none of them considered the redundancy problem in rule mining. The main contribution of this research is to propose a non-redundant association rule mining method based on closed frequent sequences and minimal sequential generators. We also give a definition for the non-redundant sequential rules, which are sequential rules with minimal antecedents but maximal consequents. A new algorithm called CSGM (closed sequential and generator mining) for generating closed sequences and minimal sequential generators is also introduced. A further experiment has been done to compare the performance of generating non-redundant sequential rules and full sequential rules, meanwhile, performance evaluation of our CSGM and other closed sequential pattern mining or generator mining algorithms has also been conducted. We also use generated non-redundant sequential rules for query expansion in order to improve recommendations for infrequently purchased products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report is the eight deliverable of the Real Time and Predictive Traveller Information project and the third deliverable of the Arterial Travel Time Information sub-project in the Integrated Traveller Information research Domain of the Smart Transport Research Centre. The primary objective of the Arterial Travel Time Information sub-project is to develop algorithms for real-time travel time estimation and prediction models for arterial traffic. Brisbane arterial network is highly equipped with Bluetooth MAC Scanners, which can provide travel time information. Literature is limited with the knowledge on the Bluetooth protocol based data acquisition process and accuracy and reliability of the analysis performed using the data. This report expands the body of knowledge surrounding the use of data from Bluetooth MAC Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing demand for mobile video has attracted much attention from both industry and researchers. To satisfy users and to facilitate the usage of mobile video, providing optimal quality to the users is necessary. As a result, quality of experience (QoE) becomes an important focus in measuring the overall quality perceived by the end-users, from the aspects of both objective system performance and subjective experience. However, due to the complexity of user experience and diversity of resources (such as videos, networks and mobile devices), it is still challenging to develop QoE models for mobile video that can represent how user-perceived value varies with changing conditions. Previous QoE modelling research has two main limitations: aspects influencing QoE are insufficiently considered; and acceptability as the user value is seldom studied. Focusing on the QoE modelling issues, two aims are defined in this thesis: (i) investigating the key influencing factors of mobile video QoE; and (ii) establishing QoE prediction models based on the relationships between user acceptability and the influencing factors, in order to help provide optimal mobile video quality. To achieve the first goal, a comprehensive user study was conducted. It investigated the main impacts on user acceptance: video encoding parameters such as quantization parameter, spatial resolution, frame rate, and encoding bitrate; video content type; mobile device display resolution; and user profiles including gender, preference for video content, and prior viewing experience. Results from both quantitative and qualitative analysis revealed the significance of these factors, as well as how and why they influenced user acceptance of mobile video quality. Based on the results of the user study, statistical techniques were used to generate a set of QoE models that predict the subjective acceptability of mobile video quality by using a group of the measurable influencing factors, including encoding parameters and bitrate, content type, and mobile device display resolution. Applying the proposed QoE models into a mobile video delivery system, optimal decisions can be made for determining proper video coding parameters and for delivering most suitable quality to users. This would lead to consistent user experience on different mobile video content and efficient resource allocation. The findings in this research enhance the understanding of user experience in the field of mobile video, which will benefit mobile video design and research. This thesis presents a way of modelling QoE by emphasising user acceptability of mobile video quality, which provides a strong connection between technical parameters and user-desired quality. Managing QoE based on acceptability promises the potential for adapting to the resource limitations and achieving an optimal QoE in the provision of mobile video content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effective Quality of Experience (QoE) management for mobile video delivery – to optimize overall user experience while adapting to heterogeneous use contexts – is still a big challenge to date. This paper proposes a mobile video delivery system to emphasize the use of acceptability as the main indicator of QoE to manage the end-to-end factors in delivering mobile video services. The first contribution is a novel framework for user-centric mobile video system that is based on acceptability-based QoE (A-QoE) prediction models, which were derived from comprehensive subjective studies. The second contribution is results from a field study that evaluates the user experience of the proposed system during realistic usage circumstances, addressing the impacts of perceived video quality, loading speed, interest in content, viewing locations, network bandwidth, display devices, and different video coding approaches, including region-of-interest (ROI) enhancement and center zooming

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study constructs performance prediction models to estimate the end-user perceived video quality on mobile devices for the latest video encoding techniques –VP9 and H.265. Both subjective and objective video quality assessments were carried out for collecting data and selecting the most desirable predictors. Using statistical regression, two models were generated to achieve 94.5% and 91.5% of prediction accuracies respectively, depending on whether the predictor derived from the objective assessment is involved. These proposed models can be directly used by media industries for video quality estimation, and will ultimately help them to ensure a positive end-user quality of experience on future mobile devices after the adaptation of the latest video encoding technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.