957 resultados para Proliferating Cell Nuclear Antigen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein–Barr virus (EBV) encoded nuclear antigen (EBNA) 1 is expressed in latently infected B lymphocytes that persist for life in healthy virus carriers and is the only viral protein regularly detected in all EBV associated malignancies. The Gly-Ala repeat domain of EBNA1 was shown to inhibit in cis the presentation of major histocompatibility complex (MHC) class I restricted cytotoxic T cell epitopes from EBNA4. It appears that the majority of antigens presented via the MHC I pathway are subject to ATP-dependent ubiquitination and degradation by the proteasome. We have investigated the influence of the repeat on this process by comparing the degradation of EBNA1, EBNA4, and Gly-Ala containing EBNA4 chimeras in a cell-free system. EBNA4 was efficiently degraded in an ATP/ubiquitin/proteasome-dependent fashion whereas EBNA1 was resistant to degradation. Processing of EBNA1 was restored by deletion of the Gly-Ala domain whereas insertion of Gly-Ala repeats of various lengths and in different positions prevented the degradation of EBNA4 without appreciable effect on ubiquitination. Inhibition was also achieved by insertion of a Pro-Ala coding sequence. The results suggest that the repeat may affect MHC I restricted responses by inhibiting antigen processing via the ubiquitin/proteasome pathway. The presence of regularly interspersed Ala residues appears to be important for the effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EBV-encoded nuclear antigen-1 (EBNA-1) binding to a cis-acting viral DNA element, oriP, enables plasmids to persist in dividing human cells as multicopy episomes that attach to chromosomes during mitosis. In investigating the significance of EBNA-1 binding to mitotic chromosomes, we identified the basic domains of EBNA-1 within amino acids 1–89 and 323–386 as critical for chromosome binding. In contrast, the EBNA-1 C terminus (amino acids 379–641), which includes the nuclear localization signal and DNA-binding domain, does not associate with mitotic chromosomes or retain oriP plasmid DNA in dividing cell nuclei, but does enable the accumulation of replicated oriP-containing plasmid DNA in transient replication assays. The importance of chromosome association in episome maintenance was evaluated by replacing EBNA-1 amino acids 1–378 with cell proteins that have similar chromosome binding characteristics. High-mobility group-I amino acids 1–90 or histone H1–2 could substitute for EBNA-1 amino acids 1–378 in mediating more efficient accumulation of replicated oriP plasmid, association with mitotic chromosomes, nuclear retention, and long-term episome persistence. These data strongly support the hypothesis that mitotic chromosome association is a critical factor for episome maintenance. The replacement of 60% of EBNA-1 with cell protein is a significant step toward eliminating the need for noncellular protein sequences in the maintenance of episomal DNA in human cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the crystal structure of the first prokaryotic aspartic proteinase-like domain identified in the genome of Mycobacterium tuberculosis. A search in the genomes of Mycobacterium species showed that the C-terminal domains of some of the PE family proteins contain two classic DT/SG motifs of aspartic proteinases with a low overall sequence similarity to HIV proteinase. The three-dimensional structure of one of them, Rv0977 (PE_PGRS16) of M. tuberculosis revealed the characteristic pepsinf-old and catalytic site architecture. However, the active site was completely blocked by the N-terminal His-tag. Surprisingly, the enzyme was found to be inactive even after the removal of the N-terminal His-tag. A comparison of the structure with pepsins showed significant differences in the critical substrate binding residues and in the flap tyrosine conformation that could contribute to the lack of proteolytic activity of Rv0977. (C) 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear RNA and DNA in muscle cell nuclei of laboratory-reared larvae of Walleye Pollock (Gadus chalcogrammus) were simultaneously measured through the use of flow cytometry for cell-cycle analysis during 2009–11. The addition of nuclear RNA as a covariate increased by 4% the classification accuracy of a discriminant analysis model that used cell-cycle, temperature, and standard length to measure larval condition, compared with a model without it. The greatest improvement, a 7% increase in accuracy, was observed for small larvae (<6.00 mm). Nuclear RNA content varied with rearing temperature, increasing as temperature decreased. There was a loss of DNA when larvae were frozen and thawed because the percentage of cells in the DNA synthesis cell-cycle phase decreased, but DNA content was stable during storage of frozen tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Despite the potential utility of primate somatic cell nuclear transfer (SCNT) to biomedical research and to the production of autologous embryonic stem (ES) cells for cell- or tissue-based therapy, a reliable method for SCNT is not yet availab

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Cytoplast factors such as maturation promoting factor are implicated based on their involvement in nuclear envelope breakdown (NEBD) and prema

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procedures to improve somatic cell nuclear transplantation in fish were evaluated. We reported effects of nonirradiated recipient eggs, inactivated recipient eggs, different combinations between recipient eggs and donor cells, duration of serum starvation, generation number, and passage number of donor cells on developmental rates of nuclear transplant (NT) embryos. Exposure to 25,000 R of gamma-rays inactivated recipient eggs. Single nucleus of cultured, synchronized somatic cell from gynogenetic bighead carp (Aristichthys nobilis) was transplanted into nonirradiated or genetically inactivated unfertilized egg of gibel carp (Carassius auratus gibelio). There was no significant difference in developmental rate between nonirradiated and inactivated recipient eggs (27.27% vs. 25.71%, respectively). Chromosome count showed that 70.59% of NT embryos contained 48 chromosomes. It showed that most NT embryos came from donor nuclei of bighead carp, which was supported by microsatellite analysis of NT embryos. But 23.53% of NT embryos contained more than 48 chromosomes. It was presumed that those superfluous chromosomes came from nonirradiated recipient eggs. Besides, 5.88% of NT embryos were chimeras. Eggs of blunt-snout bream (Megalobrama amblycephala) and gibel carp were better recipient eggs than those of loach (Misgurnus anguillicaudatus) (25% and 18.03% vs. 8.43%). Among different duration of serum starvation, developmental rate of NT embryos from somatic nuclei of three-day serum starvation was the highest, reaching 25.71% compared to 14.14% (control), 20% (five-day), and 21.95% (seven-day). Cultured donor cells of less passage facilitated reprogramming of NT embryos than those of more passage. Recloning might improve the developmental rate of NT embryos from the differentiated donor nuclei. Developmental rate of fourth generation was the highest (54.83%) and the lowest for first generation (14.14%) compared to second generation (38.96%) and third generation (53.01%). (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunofluorescence has identified seven monoclonal antibodies reactive with the surface of meiotic cells and absent in premeiotic cells. Analysis by immunogold electron microscopy indicated that these antigens were present on the external surface of the cells and were coincident with the presence of synaptonemal complexes in the nucleus. On immunoblots a common glycosylated protein of 205 kDa was recognized, in addition to smaller subunits, suggesting the presence of a protein complex comprised of smaller peptides.