940 resultados para Process Analytical Technology (PAT)
Resumo:
Technological investment is an important driver of innovation and the evaluation of technology potential is becoming increasingly important in this context. Although there is a range of possible approaches and tools for understanding and communicating the value of technology to potential customers, not all are useful or accessible in practice, where the situation is often complex and constantly evolving. Although many companies have their own customised processes in place for securing approval for technology development, often combining several techniques, very few empirical studies have been performed to learn from these practices and provide an overall view of the process of ";selling"; technologies internally or externally. In this paper, the current literature and practice related to technology valuation is reviewed and summarised in a five step process for building a business case for technology investment that gives guidance on where and when to use specific valuation tools. The seller or proposer's perspective is taken and consultative sales techniques incorporated. This provides a flexible reference for R&D managers and adds to the body of literature on the selection and use of valuation tools. A user friendly guide has been published detailing the five step approach. © 2011 IEEE.
Resumo:
Technological investment is a key driver of innovation and the evaluation of technology potential is becoming increasingly important in this context. There is a range of approaches and tools for developing an understanding of the value of technology. However the process of communicating this potential to possible customers is not well documented in terms of theory and practice and falls outside the skill set of many technologists. This paper seeks to integrate the concepts of marketing and consultative selling into making business cases for new technologies. It describes an exploratory study which results in an outline process activity model for technologists wishing to build an effective business case for securing investment internally or when selling a technology externally. Following a review of literature, we suggest that there is potential to learn from market research and consultative sales techniques, and propose a five step process. The work has been industrially validated and forms a novel foundation for further development. © 2012 Elsevier Inc.
Resumo:
Today's fast-paced, dynamic environments mean that for organizations to keep "ahead of the game", engineering managers need to maximize current opportunities and avoid repeating past mistakes. This article describes the development study of a collaborative strategic management tool - the Experience Scan to capture past experience and apply learning from this to present and future situations. Experience Scan workshops were held in a number of different technology organizations, developing and refining the tool until its format stabilized. From participants' feedback, the workshop-based tool was judged to be a useful and efficient mechanism for communication and knowledge management, contributing to organizational learning.
Resumo:
Alpha olefins are mainly produced from paraffin cracking in China, but their quality is not good because of bad quality of cracking feed and outdated technology. The technology of paraffin once-through cracking, paraffin recycle cracking of removing the heavy fraction after wax vaporizing and that of removing the heavy fraction before wax vaporizing were investigated in this paper. It was found that the technology of paraffin recycle cracking of removing the heavy fraction before wax vaporizing is new and better under the same operating conditions. Using hard paraffin (mp 54-56 degrees C) as feed, the high-quality alpha olefins products (C-5-C-21) containing more than 97 wt% of olefins and more than 88 wt% of alpha olefins are produced under optimum process conditions, which are a steam to paraffin ratio of 15 wt%, process temperature of 600 degrees C, low hydrocarbon partial pressure and residence time of 2 s. In addition, with the technology of the second injecting steam in ethylene cracking used in paraffin cracking, producing coke in paraffin cracking furnace has been markedly reduced.
Resumo:
We present here a decoupling technique to tackle the entanglement of the nonlinear boundary condition and the movement of the char/virgin front for a thermal pyrolysis model for charring materials. Standard numerical techniques to solve moving front problems — often referred to as Stefan problems — encounter difficulties when dealing with nonlinear boundaries. While special integral methods have been developed to solve this problem, they suffer from several limitations which the technique described here overcomes. The newly developed technique is compared with the exact analytical solutions for some simple ideal situations which demonstrate that the numerical method is capable of producing accurate numerical solutions. The pyrolysis model is also used to simulate the mass loss process from a white pine sample exposed to a constant radiative flux in a nitrogen atmosphere. Comparison with experimental results demonstrates that the predictions of mass loss rates and temperature profile within the solid material are in good agreement with the experiment.
Resumo:
This paper describes the application of computational fluid dynamics (CFD) to simulate the macroscopic bulk motion of solder paste ahead of a moving squeegee blade in the stencil printing process during the manufacture of electronic components. The successful outcome of the stencil printing process is dependent on the interaction of numerous process parameters. A better understanding of these parameters is required to determine their relation to print quality and improve guidelines for process optimization. Various modelling techniques have arisen to analyse the flow behaviour of solder paste, including macroscopic studies of the whole mass of paste as well as microstructural analyses of the motion of individual solder particles suspended in the carrier fluid. This work builds on the knowledge gained to date from earlier analytical models and CFD investigations by considering the important non-Newtonian rheological properties of solder pastes which have been neglected in previous macroscopic studies. Pressure and velocity distributions are obtained from both Newtonian and non-Newtonian CFD simulations and evaluated against each other as well as existing established analytical models. Significant differences between the results are observed, which demonstrate the importance of modelling non-Newtonian properties for realistic representation of the flow behaviour of solder paste.