997 resultados para Prion protein
Resumo:
Prion diseases are a group of fatal neurodegenerative disorders that are unique in being infectious, genetic, and sporadic in origin. Infectious cases are caused by prions, which are composed primarily of PrPSc, a posttranslationally modified isoform of the normal cellular prion protein PrPC. Inherited cases are linked to insertional or point mutations in the host gene encoding PrPC. To investigate the molecular mechanisms underlying inherited prion diseases, we have constructed stably transfected Chinese hamster ovary cells that express mouse PrPs homologous to two human PrPs associated with familial Creutzfeldt-Jakob disease. One mouse PrP molecule carries a Glu-->Lys substitution at codon 199, and the other carries an insertion of six additional octapeptide repeats between codons 51 and 90. We find that both of these mutant PrPs display several biochemical hallmarks of PrPSc when synthesized in cell culture. Unlike wild-type PrP, the mutant proteins are detergent insoluble and are relatively resistant to digestion by proteinase K, yielding an N-terminally truncated core fragment of 27-30 kDa. Pulse-chase labeling experiments demonstrate that these properties are acquired posttranslationally, and are accompanied by increased metabolic stability of the protein. Our results provide the first evidence that a molecule with properties reminiscent of PrPSc can be generated de novo in cultured cells.
Resumo:
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.
Resumo:
Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the Abeta and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis.
Resumo:
TThe size frequency distributions of ß-amyloid (Aß) and prion protein (PrPsc) deposits were studied in Alzheimer’s disease (AD) and the variant form of Creutzfeldt-Jakob disease (vCJD) respectively. All size distributions were unimodal and positively skewed. Aß deposits reached a greater maximum size and their distributions were significantly less skewed than the PrPsc deposits. All distributions were approximately log-normal in shape but only the diffuse PrPsc deposits did not deviate significantly from a log-normal model. There were fewer larger classic Aß deposits than predicted and the florid PrPsc deposits occupied a more restricted size range than predicted by a log-normal model. Hence, Aß deposits exhibit greater growth than the corresponding PrPsc deposits. Surface diffusion may be particularly important in determining the growth of the diffuse PrPsc deposits. In addition, there are factors limiting the maximum size of the Aß and florid PrPsc deposits.
Resumo:
The objective of this chapter is to quantify the neuropathology of the cerebellar cortex in cases of the prion disease variant Creutzfeldt-Jakob disease (vCJD). Hence, sequential sections of the cerebellum of 15 cases of vCJD were stained with H/E, or immunolabelled with a monoclonal antibody 12F10 against prion protein (PrP) and studied using quantitative techniques and spatial pattern analysis. A significant loss of Purkinje cells was evident in all cases. Densities of the vacuolation and the protease resistant form of prion protein (PrPSc) in the form of diffuse and florid plaques were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques, occurred in clusters which were regularly distributed along the folia, larger clusters of vacuoles and diffuse plaques being present in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML and a positive spatial correlation between the clusters of vacuoles and the diffuse PrPSc plaques in the ML and GL in five and six cases respectively. A canonical variate analysis (CVA) suggested a negative correlation between the densities of the vacuolation in the GL and the diffuse PrPSc plaques in the ML. The data suggest: 1) all laminae of the cerebellar cortex were affected by the pathology of vCJD, the GL more severely than the ML, 2) the pathology was topographically distributed especially in the Purkinje cell layer and GL, 3) pathological spread may occur in relation to a loop of anatomical projections connecting the cerebellum, thalamus, cerebral cortex, and pons, and 4) there are differences in the pathology of the cerebellum in vCJD compared with the M/M1 subtype of sporadic CJD (sCJD).
Resumo:
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics. ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Resumo:
Les proteïnes associades a la mielina (MAIS), Nogo-A, MAG i OMgp, són molècules que presenten una capacitat inhibitòria molt important per el recreixement axonal i la neuroreparació després de lesió. No obstant des de fa anys les seves funcions han estat ampliades i s’han involucrat en diferents processos degeneratius del sistema nerviós o en processos neuroinflamatoris del sistema nerviós central i el perifèric com ara l'Escleresi Múltiple (MS). La base neurobiològica d’indicadors moleculars que són responsables del dany axonal en MS segueixen sense estar plenament descrits. Recentment s’ha publicat que el mecanisme de senyalització Nogo-A pot regir els primers canvis de la desmielinització immunomediada del sistema nerviós central en el model animal de MS, l’encefalomielitis autoimmune experimental (EAE). De la mateixa forma la proteïna priònica cel•lular és una proteïna que s’ha associat majoritàriament a malalties espongiformes, però que recentment s’ha vinculat (no sense controvèrsia) amb la seva possible relació amb la Malaltia d'Alzheimer (AD), ja que seria capaç de reclutar els oligòmers d’Aβ (ADDLs), els quals correlacionen millor amb el grau de demència, i amb els que interacciona directament, actuant així com un possible mediador de la fosforilació de tau en la malaltia. No obstant, les funcions de les MAIS i de la PrPc en aquests models de la malaltia no estan clarament definits i, per altra banda, es desconeixen els mecanismes de senyalització implicats, no descartant de forma clara el component neural i l’immune.
Resumo:
Sleep and wakefulness are complex behaviors that are influenced by many genetic and environmental factors, which are beginning to be discovered. The contribution of genetic components to sleep disorders is also increasingly recognized as important. Point mutations in the prion protein, period 2, and the prepro-hypocretin/orexin gene have been found as the cause of a few sleep disorders but the possibility that other gene defects may contribute to the pathophysiology of major sleep disorders is worth in-depth investigations. However, single gene disorders are rare and most common disorders are complex in terms of their genetic susceptibility, environmental effects, gene-gene, and gene-environment interactions. We review here the current progress in the genetics of normal and pathological sleep.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.
Resumo:
The β site APP cleaving enzyme 1 (BACE1) is the rate-limiting β-secretase enzyme in the amyloidogenic processing of APP and Aβ formation, and therefore it has a prominent role in Alzheimer"s disease (AD) pathology. Recent evidence suggests that the prion protein (PrP) interacts directly with BACE1 regulating its β-secretase activity. Moreover, PrP has been proposed as the cellular receptor involved in the impairment of synaptic plasticity and toxicity caused by Aβ oligomers. Provided that common pathophysiologic mechanisms are shared by Alzheimer"s and Creutzfeldt-Jakob (CJD) diseases, we investigated for the first time to the best of our knowledge a possible association of a common synonymous BACE1 polymorphism (rs638405) with sporadic CJD (sCJD). Our results indicate that BACE1 C-allele is associated with an increased risk for developing sCJD, mainly in PRNP M129M homozygous subjects with early onset. These results extend the very short list of genes (other than PRNP) involved in the development of human prion diseases; and support the notion that similar to AD, in sCJD several loci may contribute with modest overall effects to disease risk. These findings underscore the interplay in both pathologies of APP, Aβ oligomers, ApoE, PrP and BACE1, and suggest that aging and perhaps vascular risk factors may modulate disease pathologies in part through these key players
Resumo:
Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc) were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min) in phosphate-buffered saline (PBS) of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK) resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.
Resumo:
Generalidades. Las encefalopatías espongiformes transmisibles son enfermedades neurodegenerativas ocasionadas por la acumulación anormal de una variante mal plegada de la proteína priónica, lo cual induce la formación de conglomerados proteicos resistentes a la degradación. Además, son responsables de la disfunción sináptica, daño neuronal y de la sintomatología clásica acompañante. Esta proteína de membrana es codificada por el exón 2 del gen PRNP, ubicado en el brazo corto del cromosoma 20 y parece estar involucrada en la trasmisión sináptica, la transducción de señales, la actividad antioxidante de la superoxidodismutasa, neuroplasticidad y sobrevida celular. Un polimorfismo en el codón 129 se asocia con una susceptibilidad diferencial a la enfermedad Creutzfeldt-Jakob esporádica. Objetivo. Estudio clínico, patológico y molecular de un caso de una mujer de 58 años con diagnóstico de enfermedad de Creutzfeldt- Jakob esporádica. Métodos y resultados. Se presenta el caso de una mujer en quien aparece un trastorno depresivo del afecto con demencia progresiva y sintomatología general. Al final de la enfermedad, el cuadro progresó a un déficit neurológico focalizado en el área visual. La RMN mostró hiperintensidades inespecíficas córtico-subcorticales en el núcleo estriado; en el EEG se encontró pérdida de ritmos de fondo, patrón de descargas periódicas generalizadas y complejos trifásicos; en la biopsia cerebral postmorten se evidenció pérdida severa de la población neuronal en todas las capas, vacuolas en el neuropil, en el soma neuronal y en la glía. El análisis de secuencia del gen PRNP, a partir de extracción de DNA de sangre periférica, identificó homocigosis para metionina en el codón 129. La paciente fallece a los 3 meses del inicio de la sintomatología. Conclusión. Por epidemiología, curso clínico y exámenes paraclínicos se confirma el diagnóstico de enfermedad de Creutzfeldt- Jakob esporádica.La determinación del genotipo para los polimorfismos de riesgo se convierte en una herramienta útil para complementar por medios moleculares el diagnóstico y para profundizar la comprensión de la fisiopatología de la enfermedad de Creutzfeldt-Jakob, tanto para formas esporádicas como para la nueva variante.
Resumo:
Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.