850 resultados para Prey Selection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect learning can change the preferences an egg laying female displays towards different host plant species. Current hypotheses propose that learning may be advantageous in adult host selection behaviour through improved recognition, accuracy or selectivity in foraging. In this paper, we present a hypothesis for when learning can be advantageous without such improvements in adult host foraging. Specifically, that learning can be an advantageous strategy for egg laying females when larvae must feed on more than one plant in order to complete development, if the fitness of larvae is reduced when they switch to a different host species. Here, larvae benefit from developing on the most abundant host species, which is the most likely choice of host for an adult insect which increases its preference for a host species through learning. The hypothesis is formalised with a mathematical model and we provide evidence from studies on the behavioural ecology, of a number of insect species which demonstrate that the assumptions of this hypothesis may frequently be fulfilled in nature. We discuss how multiple mechanisms may convey advantages in insect learning and that benefits to larval development, which have so far been overlooked, should be considered in explanations for the widespread occurrence of learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A data warehouse is a data repository which collects and maintains a large amount of data from multiple distributed, autonomous and possibly heterogeneous data sources. Often the data is stored in the form of materialized views in order to provide fast access to the integrated data. One of the most important decisions in designing a data warehouse is the selection of views for materialization. The objective is to select an appropriate set of views that minimizes the total query response time with the constraint that the total maintenance time for these materialized views is within a given bound. This view selection problem is totally different from the view selection problem under the disk space constraint. In this paper the view selection problem under the maintenance time constraint is investigated. Two efficient, heuristic algorithms for the problem are proposed. The key to devising the proposed algorithms is to define good heuristic functions and to reduce the problem to some well-solved optimization problems. As a result, an approximate solution of the known optimization problem will give a feasible solution of the original problem. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bridled nailtail wallaby is restricted to one locality in central Queensland, Australia. The population declined severely during a major drought between 1991 and 1995. We investigated age-specific covariates of survival and proximate causes of mortality from 1994 to 1997, using mark-recapture and radio-tagging techniques at two study sites. Using a matrix population model, we also modelled the effect of drought on age-specific survival and the intrinsic rate of population increase,;,. The only significant covariate of survival for adults was a measure of health unrelated to drought. Rainfall, food, predator activity, year, sex and habitat were not associated with variation in adult survival. Juvenile survival was negatively affected by drought, and predation was the proximate cause of most juvenile deaths. The matrix projection model showed that the observed juvenile survivorship during the drought was low enough to have produced a population decline, although fecundity and survival of other age classes was high throughout the study. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a general theoretical framework for exploring the host plant selection behaviour of herbivorous insects. This model can be used to address a number of questions, including the evolution of specialists, generalists, preference hierarchies, and learning. We use our model to: (i) demonstrate the consequences of the extent to which the reproductive success of a foraging female is limited by the rate at which they find host plants (host limitation) or the number of eggs they carry (egg limitation); (ii) emphasize the different consequences of variation in behaviour before and after landing on (locating) a host (termed pre- and post-alighting, respectively); (iii) show that, in contrast to previous predictions, learning can be favoured in post-alighting behaviour-in particular, individuals can be selected to concentrate oviposition on an abundant low-quality host, whilst ignoring a rare higher-quality host; (iv) emphasize the importance of interactions between mechanisms in favouring specialization or learning. (C) 2002 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis, to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.