136 resultados para Prepubertal
Resumo:
OBJECTIVE: The previously described c655G>A mutation of the human cytochrome P450 aromatase gene (P450aro, CYP19) results in aberrant splicing due to disruption of a donor splice site. To explain the phenotype of partial aromatase deficiency observed in a female patient described with this mutation, molecular consequences of the c655G>A mutation were investigated. DESIGN: To investigate whether the c655G>A mutation causes an aberrant spliced mRNA lacking exon 5 (-Ex5), P450aro RNA was analysed from the patient's lymphocytes by reverse transcription polymerase chain reaction (RT-PCR) and by splicing assays performed in Y1 cells transfected with a P450aro -Ex5 expression vector. Aromatase activity of the c655G>A mutant was predicted by three dimensional (3D) protein modelling studies and analysed in transiently transfected Y1 cells. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to both splicing mutations and physiological alternative splicing events. Therefore, expression of the -Ex5 mRNA was also assessed as a possibly naturally occurring alternative splicing transcript in normal human steroidogenic tissues. PATIENTS: An aromatase deficient girl was born with ambiguous genitalia. Elevated serum LH, FSH and androgens, as well as cystic ovaries, were found during prepuberty. At the age of 8.4 years, spontaneous breast development and a 194.6 pmol/l serum oestradiol level was observed. RESULTS: The -Ex5 mRNA was found in lymphocytes of the P450aro deficient girl and her father, who was a carrier of the mutation. Mutant minigene expression resulted in complete exon 5 skipping. As expected from 3D protein modelling, -Ex5 cDNA expression in Y1 cells resulted in loss of P450aro activity. In addition, the -Ex5 mRNA was present in placenta, prepubertal testis and adrenal tissues. CONCLUSIONS: Alternative splicing of exon 5 of the CYP19 gene occurs in the wild type (WT) as well as in the c655G>A mutant. We speculate that for the WT it might function as a regulatory mechanism for aromatization, whereas for the mutant a relative prevalence of the shorter over the full-length protein might explain the phenotype of partial aromatase deficiency.
Resumo:
OBJECTIVE: Data on the GH-induced catch-up growth of severely GH-deficient children affected by monogenetic defects are missing. PATIENTS: Catch-up growth of 21 prepubertal children (6 females, 15 males) affected with IGHD type II was analyzed in a retrospective chart review. At start of therapy, mean age was 6.2 years (range, 1.6-15.0), mean height SDS was -4.7 (-7.6 to -2.2), mean IGF-I SDS was -6.2 (-10.1 to -2.2). GH was substituted using a mean dose of 30.5microg/kg*d. RESULTS: Catch-up growth was characterized by a mean height gain of +0.92, +0.82, and +0.61 SDS after 1, 2, and 3 years of GH therapy, respectively. Mean height velocities were 10.7, 9.2 and 7.7cm/year during the first three years. Mean duration of complete catch-up growth was 6 years (3-9). Mean height SDS reached was -0.97 (-2.3 to +1.1), which was within the range of the estimated target height of -0.60 SDS (-1.20 to -0.15). The younger and shorter the children were at start of therapy the better they grew during the first year independent of the dose. Mean bone age was delayed at start by 2.1 years and progressed by 2.5 years during the first two years of therapy. Incomplete catch-up growth was caused by late initiation or irregular administration of GH in four cases. CONCLUSIONS: Our data suggest that GH-treated children with severe IGHD show a sustained catch-up growth over 6 years (mean) and reach their target height range. This response to GH is considered to be characteristic for young children with severe growth retardation due to IGHD.
Resumo:
BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Resumo:
We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.
Resumo:
AIMS/HYPOTHESIS In diabetes mellitus type I, good glycaemic control is crucial in preventing long-term diabetic complications. The aim of this study was to determine the current level of metabolic control in children and adolescents in our diabetes outpatient clinic at the University Children's Hospital, Berne. Furthermore, the impact of different factors such as age, pubertal stage, sex, duration of diabetes and insulin regimen on glycaemic control was studied. METHODS In a cross-sectional, prospective study 168 children and adolescents with type I diabetes mellitus (f:m = 87:81; prepubertal 48 [mean age 4.4 years, mean duration of diabetes 2.8 years]; pubertal 120 [mean age 9.4 years; mean duration of diabetes 5.2 years]) were studied for three months. Clinical data and HbA1c levels (latex immunoagglutination test) were recorded, statistically analysed and compared with the international literature. RESULTS In our type I diabetic children and adolescents the overall HbA1c was 8.07 +/- 1.15% (mean +/- SD; test-specific norm for healthy subjects: 4.1-6.1%). Glycaemic control was significantly worse in the pubertal group compared to the prepubertal (HbA1c 8.22 +/- 1.25% vs. 7.81 +/- 0.87%; p < 0.01). In addition, we found better metabolic control in patients with duration of diabetes below 2 years in children and adolescents (HbA1c prepubertal < 2 years: 7.45 +/- 0.67% vs. > 2 years: 8.05 +/- 0.93%, p < 0.05; pubertal < 2 years: 7.62 +/- 0.75% vs. > 2 years: 8.31 +/- 1.29%, p < 0.005). Importantly, sex and insulin regimen did not significantly influence glycaemic control. CONCLUSION/INTERPRETATION The current level of metabolic control in our children and adolescents with diabetes mellitus type I is comparable to the glycaemic control of the intensively treated adolescent group of the DCCT-study, in whom decreased risk of long-term diabetic complications was found. In contrast, our patients were intensively treated in terms of frequent contacts with the diabetes team, but were not necessarily on an intensified insulin regimen. The impact of biopsychosocial support from multidisciplinary diabetes team on good metabolic control in children and adolescents with type I diabetes mellitus and their families seems to be very important.
Resumo:
OBJECTIVES Growth retardation is a frequent complication of paediatric inflammatory bowel disease (IBD). Only a few studies report the final height of these patients, with controversial results. We compared adult height of patients with paediatric IBD with that of patients with adult-onset disease. METHODS Height data of 675 women 19-44 years of age and 454 men 23-44 years of age obtained at inclusion in the Swiss IBD cohort study registry were grouped according to the age at diagnosis: (a) prepubertal (men≤13, women≤11 years), (b) pubertal (men 13-22, women 11-18 years) and (c) adult (men>22, women>18 years of age), and compared with each other and with healthy controls. RESULTS Male patients with prepubertal onset of Crohn's disease (CD) had significantly lower final height (mean 172±6 cm, range 161-182) compared with men with pubertal (179±6 cm, 161-192) or adult (178±7 cm, 162-200) age at onset and the general population (178±7 cm, 142-204). Height z-scores standardized against heights of the normal population were significantly lower in all patients with a prepubertal diagnosis of CD (-0.8±0.9) compared with the other patient groups (-0.1±0.8, P<0.001). Prepubertal onset of CD emerged as a risk factor for reduced final height in patients with prepubertal CD. No difference for final height was found between patients with ulcerative or unclassified IBD diagnosed at prepubertal, pubertal or adult age. CONCLUSION Prepubertal onset of CD is a risk for lower final height, independent of the initial disease location and the necessity for surgical interventions.
Resumo:
Earlier age at puberty is a known risk factor for breast cancer and suspected to influence prostate cancer; yet few studies have assessed early life risk factors for puberty. The overall objectives was to determine the relationship between birth-weight-for-gestational-age (BWGA), weight gain in infancy and pubertal status in girls and boys at 10.8 and 11.8 years and who were born of preeclamptic (PE) and normotensive (NT) mothers. Data for this study were collected from hospital and public health medical records and at a follow-up visit at 10.8 and 11.8 years for girls and boys, respectively. We used stratified analysis and multivariable logistic regression modeling to assess effect measure modifier and to determine the relationship between BWGA, weight gain in infancy and childhood and pubertal status, respectively. ^ There was no difference in the relationship between BWGA and pubertal status by maternal PE status for girls and boys; however, there was a non-significant increase in the odds of having been born small-for-gestational-age (SGA) in girls who were pubertal for breast or pubic hair Tanner stage 2+ compared to those who B1 or PH1. In contrast, boys who were pubertal for genital and pubic hair Tanner stage 2+ had lower odds of having been born SGA than those who were prepubertal for G1 or PH1. ^ In girls who were pubertal for breast development, the odds of having gained one additional unit SD for weight was highest between 3 to 6 months and 6-12 months for those who were B2+ vs. B1. For pubic hair development, weight gain between 6-12 months had the greatest effect for girls of PE mothers only. In boys, there were no statistically significant associations between weight gain and genital Tanner stage at any of the intervals; however, weight gain between 3-6 months did affect pubic hair tanner stage in boys of NT mothers. This study provide important evidence regarding the role of SGA and weight gain at specific age intervals on puberty; however, larger studies need to shed light on modifiable exposures for behavioral interventions in pregnancy, postpartum and in childhood.^
Resumo:
The formation of estrogens from C19 steroids is catalyzed by aromatase cytochrome P450 (P450arom), the product of the cyp19 gene. The actions of estrogen include dimorphic anatomical, functional, and behavioral effects on the development of both males and females, considerations that prompted us to examine the consequences of deficiency of aromatase activity in mice. Mice lacking a functional aromatase enzyme (ArKO) were generated by targeted disruption of the cyp19 gene. Male and female ArKO mice were born with the expected Mendelian frequency from F1 parents and grew to adulthood. Female ArKO mice at 9 weeks of age displayed underdeveloped external genitalia and uteri. Ovaries contained numerous follicles with abundant granulosa cells and evidence of antrum formation that appeared arrested before ovulation. No corpora lutea were present. Additionally the stroma were hyperplastic with structures that appeared to be atretic follicles. Development of the mammary glands approximated that of a prepubertal female. Examination of male ArKO mice of the same age revealed essentially normal internal anatomy but with enlargement of the male accessory sex glands because of increased content of secreted material. The testes appeared normal. Male ArKO mice are capable of breeding and produce litters of approximately average size. Whereas serum estradiol levels were at the limit of detection, testosterone levels were elevated, as were the levels of follicle-stimulating hormone and luteinizing hormone. The phenotype of these animals differs markedly from that of the previously reported ERKO mice, in which the estrogen receptor α is deleted by targeted disruption.
Resumo:
Proteins of the Bcl-2 family are important regulators of apoptosis in many tissues of the embryo and adult. The recently isolated bcl-w gene encodes a pro-survival member of the Bcl-2 family, which is widely expressed. To explore its physiological role, we have inactivated the bcl-w gene in the mouse by homologous recombination. Mice that lack Bcl-w were viable, healthy, and normal in appearance. Most tissues exhibited typical histology, and hematopoiesis was unaffected, presumably due to redundant function with other pro-survival family members. Although female reproductive function was normal, the males were infertile. The testes developed normally, and the initial, prepubertal wave of spermatogenesis was largely unaffected. The seminiferous tubules of adult males, however, were disorganized, contained numerous apoptotic cells, and produced no mature sperm. Both Sertoli cells and germ cells of all types were reduced in number, the most mature germ cells being the most severely depleted. The bcl-w−/− mouse provides a unique model of failed spermatogenesis in the adult that may be relevant to some cases of human male sterility.
Resumo:
Müllerian inhibiting substance (MIS) is a key element required to complete mammalian male sex differentiation. The expression pattern of MIS is tightly regulated in fetal, neonatal, and prepubertal testes and adult ovaries and is well conserved among mammalian species. Although several factors have been shown to be essential to MIS expression, its regulatory mechanisms are not fully understood. We have examined MIS promoter activity in 2-day postnatal primary cultures of rat Sertoli cells that continue to express endogenous MIS mRNA. Using this system, we found that the region between human MIS−269 and −192 is necessary for full MIS promoter activity. We identified by DNase I footprint and electrophoretic mobility-shift analyses a distal steroidogenic factor-1 (SF-1)-binding site that is essential for full promoter activity. Mutational analysis of this new distal SF-1 site and the previously identified proximal SF-1 site showed that both are necessary for transcriptional activation. Moreover, the proximal promoter also contains multiple GATA-4-binding sites that are essential for functional promoter activity. Thus multiple SF-1- and GATA-4-binding sites in the MIS promoter are required for normal tissue-specific and developmental expression of MIS.
Resumo:
An obligatory role for estrogen in growth, development, and functions of the mammary gland is well established, but the roles of the two estrogen receptors remain unclear. With the use of specific antibodies, it was found that both estrogen receptors, ERα and ERβ, are expressed in the rat mammary gland but the presence and cellular distribution of the two receptors are distinct. In prepubertal rats, ERα was detected in 40% of the epithelial cell nuclei. This decreased to 30% at puberty and continued to decrease throughout pregnancy to a low of 5% at day 14. During lactation there was a large induction of ERα with up to 70% of the nuclei positive at day 21. Approximately 60–70% of epithelial cells expressed ERβ at all stages of breast development. Cells coexpressing ERα and ERβ were rare during pregnancy, a proliferative phase, but they represented up to 60% of the epithelial cells during lactation, a postproliferative phase. Western blot analysis and sucrose gradient centrifugation confirmed this pattern of expression. During pregnancy, the proliferating cell nuclear antigen was not expressed in ERα-positive cells but was observed in 3–7% of ERβ-containing cells. Because more than 90% of ERβ-bearing cells do not proliferate, and 55–70% of the dividing cells have neither ERα nor ERβ, it is clear that the presence of these receptors in epithelial cells is not a prerequisite for estrogen-mediated proliferation.
Resumo:
Problématique : L'allergie au lait de vache (ALV) est reconnue comme une condition transitoire qui disparaît chez la majorité des enfants avant l’âge de 3-5 ans, mais des données récentes révèlent une persistance de l’ALV. Les enfants souffrant d’une ALV sont à risque d’apports insuffisants en calcium et en vitamine D, deux nutriments impliqués dans la santé osseuse. Une première étude transversale portant sur la santé osseuse d’enfants prépubères ALV a observé que la densité osseuse (DMO) lombaire était significativement inférieure à celle d’enfants sans allergie au lait de vache (SALV). Objectifs : Sur la base de ces résultats, nous désirons documenter l’évolution longitudinale de la santé osseuse, du statut en vitamine D, des apports en calcium et en vitamine D et de l’adhérence à la supplémentation des enfants ALV (n=36) et de comparer ces données aux enfants SALV (n=19). Résultats : Le gain annualisé de la DMO lombaire est similaire entre les enfants ALV et SALV. Bien qu’il n’y ait pas de différence significative entre les deux groupes, la DMO lombaire des enfants ALV demeure cependant inférieure à celle des témoins. Qui plus est, le score-Z de la DMO du corps entier tend à être inférieur chez les enfants-cas comparé aux témoins. Au suivi, la concentration de 25OHD et le taux d’insuffisance en vitamine D sont similaires entre les deux groupes tout comme les apports en calcium et en vitamine D. Davantage d’enfants ALV prennent un supplément de calcium au suivi comparativement au temps initial (42% vs. 49%, p<0,05), mais le taux d’adhérence à la supplémentation a diminué à 4 jours/semaine. Conclusion : Une évaluation plus précoce ainsi qu’une prise en charge de la santé osseuse des enfants ALV pourraient être indiquées afin de modifier l’évolution naturelle de leur santé osseuse. Les résultats justifient aussi le suivi étroit des apports en calcium et vitamine D par une nutritionniste et la nécessité d'intégrer la supplémentation dans le plan de traitement de ces enfants et d’assurer une surveillance de l’adhérence à la supplémentation.
Resumo:
OBJECTIVE - To assess the concurrent validity of fasting indexes of insulin sensitivity and secretion in - obese prepubertal (Tanner stage 1) children and pubertal (Tanner stages 2-5) glucose tolerance test (FSIVGTT) as a criterion measure. RESEARCH DESIGN AND METHODS - Eighteen obese children and adolescents (11 girls and 7 boys, mean age 12.2 +/- 2.4 years, mean BMI 35.4 +/- 6.2 kg/m(2), mean BMI-SDS 3.5 +/- 0.5, 7 prepubertal and I I pubertal) participated in the study. All participants underwent an insulin-modified FSIVGTT on two occasions, and 15 repeated this test a third time (mean 12.9 and 12.0 weeks apart). S-i measured by the FSIVGTT was compared with homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and fasting insulin (estimates of insulin sensitivity derived from fasting samples). The acute insulin response (AIR) measured by the FSIVGTT was compared with HOMA of percent beta-cell function (HOMA-beta%), FGIR, and fasting insulin (estimates of insulin secretion derived from fasting samples). RESULTS - There was a significant negative correlation between HOMA-IR and S-i (r = -0.89, r = -0.90, and r = -0.81, P < 0.01) and a significant positive correlation between QUICKI and S-i (r = 0.89, r = 0.90, and r = 0.81, P < 0.01) at each time point. There was a significant positive correlation between FGIR and S-i (r = 0.91, r = 0.91, and r = 0.82, P < 0.01) and a significant negative correlation between fasting insulin and S-i (r = -90, r = -0.90, and r = -0.88, P < 0.01). HOMA-beta% was not as strongly correlated with AIR (r = 0.60, r = 0.54, and r = 0.61, P < 0.05). CONCLUSIONS - HOMA-IR, QUICKI, FGIR, and fasting insulin correlate strongly with S-i assessed by the FSIVGTT in obese children and adolescents. Correlations between HOMA-β% FGIR and fasting insulin, and AIR were not as strong. Indexes derived from fasting samples are a valid tool for assessing insulin sensitivity in prepubertal and pubertal obese children.
Resumo:
Loading of the femoral neck (FN) is dominated by bending and compressive stresses. We hypothesize that adaptation of the FN to physical activity would be manifested in the cross-sectional area (CSA) and section modulus (Z) of bone, indices of axial and bending strength, respectively. We investigated the influence of physical activity on bone strength during adolescence using 7 years of longitudinal data from 109 boys and 121 girls from the Saskatchewan Paediatric Bone and Mineral Accrual Study (PBMAS). Physical activity data (PAC-Q physical activity inventory) and anthropometric measurements were taken every 6 months and DXA bone scans were measured annually (Hologic QDR2000, array mode). We applied hip structural analysis to derive strength and geometric indices of the femoral neck using DXA scans. To control for maturation, we determined a biological maturity age defined as years from age at peak height velocity (APHV). To account for the repeated measures within individual nature of longitudinal data, multilevel random effects regression analyses were used to analyze the data. When biological maturity age and body size (height and weight) were controlled, in both boys and girls, physical activity was a significant positive independent predictor of CSA and Z of the narrow region of the femoral neck (P < 0.05). There was no independent effect of physical activity on the subperiosteal width of the femoral neck. When leg length and leg lean mass were introduced into the random effects models to control for size and muscle mass of the leg (instead of height and weight), all significant effects of physical activity disappeared. Even among adolescents engaged in normal levels of physical activity, the statistically significant relationship between physical activity and indices of bone strength demonstrate that modifiable lifestyle factors like exercise play an important role in optimizing bone strength during the growing years. Physical activity differences were explained by the interdependence between activity and lean mass considerations. Physical activity is important for optimal development of bone strength. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Experiments to design physical activity programs that optimize their osteogenic potential are difficult to accomplish in humans. The aim of this article is to review the contributions that animal studies have made to knowledge of the loading conditions that are osteogenic to the skeleton during growth, as well as to consider to what extent animal studies fail to provide valid models of physical activity and skeletal maturation. Controlled loading studies demonstrate that static loads are ineffective, and that bone formation is threshold driven and dependent on strain rate, amplitude, and duration of loading. Only a few loading cycles per session are required, and distributed bouts are more osteogenic than sessions of long duration. Finally, animal models fail to inform us of the most appropriate ways to account for the variations in biological maturation that occur in our studies of children and adolescents, requiring the use of techniques for studying human growth and development.