206 resultados para Prelog-Djerassi Lactone
Resumo:
The thesis entitled novel heterocyclic constructions mediated by nucleophilic carbenes and related chemistry, embodies the results of the investigations carried out to explore the reactivity patterns of the 1:1 zwitterions, generated in situ from various nucleophilic carbenes and DiMethyl AcetyleneDicarboxylate(DMAD) towards aldehydes and ketones. The traditional synthesis of complex organic molecules employs stepwise formation of bonds and involves multiple steps. Besides the sequential synthesis, in several instances, the desired product can also be obtained in one pot reactions of three or more starting compounds. Such reactions in which more than two starting materials react to form a product in such a way that the majority of the atoms of the starting materials can be found in the products are called multicomponent reactions(MCRs). The results of our investigations on the application of N-heterocyclic carbenes in multicomponent reaction with DMAD and aromatic aldehydes leading to the one pot synthesis of 2-oxy-maleate and furanone derivatives. It is interesting to note that dihydrofuran and lactone motifs are present in a number of biologically active natural products and other heterocyclic compounds. It is conceivable that the novel multicomponent reactions described herein will find application in the synthesis of a variety of heterocyclic compounds, and in natural product synthesis.
Resumo:
Im Rahmen dieser Dissertation wurden die Dynamik und die Kommunikation innerhalb der mikrobiellen Population der Rhizosphäre von Deutschem Weidelgras (Lolium perenne) untersucht, welches auf einer teilweise rekultivierten Rückstandshalde der Kaliindustrie wuchs. Um die niederschlagsbedingte Auswaschung von Salzen zu reduzieren, wird die Rückstandshalde des Kaliwerks Sigmundshall (in Bokeloh bei Hannover) schrittweise mit dem technogenen Abdecksubstrat REKAL/SAV ummantelt. Dieses weist eine hohe Standfestigkeit und Wasserspeicherkapazität auf und kann zudem begrünt werden, wofür als Pionierpflanze Lolium perenne dient. Durch diese Rekultivierung wird Niederschlag besser gespeichert und über Evapotranspiration wieder in die Luft abgegeben, was letztendlich die Bildung von Salzwasser vermindert. Da das Abdecksubstrat neben alkalischem pH-Wert auch teilweise hohe Schwermetallkonzentrationen aufweist, sollte in der vorliegenden Arbeit erstmals die mikrobielle Rhizosphären-Gemeinschaft in diesem extremen Habitat mittels einer kulturunabhängigen Methode erforscht werden. Zudem wurden erste Untersuchungen angestellt, ob im Substrat die zelldichte-abhängige bakterielle Kommunikation (Quorum Sensing) nachgewiesen werden kann. Mittels extrahierter Gesamt-DNA wurde anhand der 16S rDNA die Analyse des „Terminalen Restriktonsfragmentlängenpolymorphismus“ (TRFLP) verwendet, um die komplexe bakterielle Rhizosphären-Gemeinschaft unter zeitlichen und lokalen Aspekten zu vergleichen. Auftretende Veränderungen bei den bakteriellen Populationen der jeweiligen Proben wurden durch eine Zu- oder Abnahme der auch als Ribotypen bezeichneten terminalen Restriktionsfragmente (TRF) erfasst. Hierbei zeigten sich am Südhang der Halde während der Sommermonate der Jahre 2008 und 2009 zwar Schwankungen in den bakteriellen Gemeinschaftsprofilen, es lagen jedoch keine eindeutigen Dynamiken vor. Im Vergleich zum Südhang der Halde wies der Nordhang eine höhere Ribotyp-Diversität auf, was mit der fortgeschritteneren Rekultivierung dieses Haldenabschnitts zusammenhängen könnte. Zusätzlich wurden Bakterien aus der Rhizosphäre von Lolium perenne isoliert und mithilfe der Biosensoren Agrobacterium tumefaciens A136 pCF218 pCF372 und Chromobacterium violaceum CV026 auf die Produktion von N-Acylhomoserinlactonen (AHLs) überprüft. Diese AHLs werden von Gram-negativen Mikroorganismen als Signalmoleküle verwendet, um ihre Genexpression zelldichteabhängig zu kontrollieren. Von den 47 getesteten Gram-negativen Rhizosphärenisolaten konnten nur bei einem reproduzierbar AHL-Moleküle mithilfe des Reporterstamms A. tumefaciens nachgewiesen werden. Der AHL-Produzent wurde als Pseudomonas fluorescens identifiziert. Mittels dünnschichtchromatographischer Analysen konnten die extrahierten bakteriellen AHL-Moleküle den N-Octanoyl-L-homoserinlactonen zugeordnet werden.
Resumo:
Ziel dieser Arbeit war, ausgehend von alpha-Aminoaldehyden eine kurze und effiziente Synthese zur Darstellung von Aminosäuren mit alpha-quartären Zentren in enantiomerenreiner Form und davon ableitbare wichtige Synthone in der organischen Synthese zu entwickeln. Der enantiomerenreine 2-tert-Butyl-4-methyl-1,3-oxazolidin-4-carbaldehyd ist via kupfer-katalysierter Aziridinierung des enantiomerenangereicherten 2-tert-Butyl-5-methyl-4H-1,3-dioxins mit der Nitrenquelle (N-Tosylimino)phenyliodinan zugänglich. Eine anschließende Oxidation mit Natriumhyperchlorid und Wasserstoffperoxid führt zur korrespondierenden Carbonsäure, die via sauer katalysierter Acetalspaltung und nachfolgender Abspaltung der Tosyl-Schutzgruppe in enantiomerenreines alpha-Methylserin in sehr guten Ausbeuten umgewandelt werden kann. Mit dem Einsatz von in C5-Position Ethyl-substituiertem 2-tert-Butyl-4H-1,3-dioxin ist analog das N-Tosyl geschützte alpha-Ethylserin darstellbar. Um die bestehende Lösungsmittelabhängigkeit in weniger polaren Losungsmitteln wie Dichlormethan oder Diethylether der Aziridinierung in Bezug auf ihre Diastereoselektivität und Reaktivität zu minimieren, wurden unterschiedliche Nitrenquellen untersucht. [N-(p-Methoxybenzolsulfonyl)imino]methoxyphenyliodinan stellte sich als die potenteste Nitrenquelle heraus und die Ausbeute konnte auf bis zu 70% gesteigert werden. Die Anwendbarkeit des N-Tosyl geschützten alpha-Methylserins konnte mit der Synthese des β-Lactons und 2-Carboxylethylether-2-aziridin unter Mitsunobu-Bedingungen gezeigt werden. Dabei ist die Reaktion durch einfache Variation des Lösungsmittels und der Reaktionstemperatur zu beiden Produkten in sehr guten Ausbeuten hin steuerbar. Das β-Lacton konnte anschließend erfolgreich in das N-Tosyl- und S-Acetyl- geschützte alpha-Methylcystein überführt werden.
Resumo:
We report herein the first synthesis of chiral derivatives possessing the 1,4-thiazinone core. As predicted, the thiolactone is more susceptible to nucleophilic attack than the equivalent lactone system.
Resumo:
Various conflicting data on the rearrangement and absolute stereochemistry of hydroxylignano-9,7'-lactones are resolved using O-18 labeled compounds, also confirmed by an X-ray analysis of a pure lignano-9,7'-lactone enantiomer, obtained for the first time. Under NaH/DMF rearrangement conditions a silyl protected hydroxylignano-9,9'-lactone underwent an unexpected silyl migration.
Resumo:
The vinylogous aldol reaction between appropriate aldehydes and furan-based silyloxy diene synthon generated from 3-benzyl-5H-furan-2-one (3) afforded two truncated lactone analogues [compounds (4) and (5)] of nostoclides (2). The compounds were fully characterized by IR, NMR (H-1 and C-13), 2D NMR spectroscopy experiments (HMBC, HSQC and NOESY), MS spectrometry and X-ray crystallography. Compounds (4) and (5) crystallized in the space group P2(1)2(1)2(1) and P2(1)/c, respectively. Although expected correlations between hydrogen atoms in spatial close proximity were not observed for compound (5) using NMR, the stereochemistry of the exocyclic double bond of both (4) and (5) was unambiguously determined to be Z and E, respectively, using X-ray crystallography. The packing of both compounds within the crystal are stabilized by non-classical inter-molecular hydrogen bonds. DFT calculations (B3LYP/6-31+G* level) confirmed that the crystal structures possessed the lowest energies in the gas phase when compared to their geometric isomers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tofu gels were rheologically examined to determine their storage or elastic (G′) and loss or viscous (G″) moduli as a function of frequency within their linear viscoelastic limits. The tofu gels were made using either glucono-δ-lactone (GDL) or calcium sulphate (CaSO4·2H2O), followed by either heat treatment (heated soymilk at 97 °C prior to coagulation and subsequently held at 70 °C for 60 min, HT) or high pressure treatment (400 MPa at 20 °C for 10 min, HP). The overall moduli values of the GDL gels and CaSO4·2H2O gels of both physical treatments were similar, each gave frequency profiles expected for weak viscoelastic materials. However, although both temperature and high pressure treatments could be used to produce tofu gels, the final products were not the same. Pressure formed gels, despite having a higher overall “consistency” (increasing values of their moduli), had a proportionately higher contribution from the loss modulus (increased tan δ). Differences could also be observed using confocal scanning laser microscopy. While such treatment may give rise to differing systems/structures, with new or modified organoleptic properties, the more “open” structures obtained by pressure treatment may well cause processing difficulties if subsequent reworking or moulding is required.
Resumo:
Tofu gels were rheologically examined to determine their storage or elastic (G') and loss or viscous (G '') moduli as a function of frequency within their linear viscoelastic limits. The tofu gels were made using either glucono-delta-lactone (GDL) or calcium sulphate (CaSO4 center dot 2H(2)O), followed by either heat treatment (heated soymilk at >= 97 degrees C prior to coagulation and subsequently held at 70 degrees C for 60 min, HT) or high pressure treatment (400 MPa at 20 degrees C for 10 min, HP). The overall moduli values of the GDL gels and CaSO4 center dot 2H(2)O gels of both physical treatments were similar, each gave frequency profiles expected for weak viscoelastic materials. However, although both temperature and high pressure treatments could be used to produce tofu gels, the final products were not the same. Pressure formed gels, despite having a higher overall "consistency" (increasing values of their moduli), had a proportionately higher contribution from the loss modulus (increased tan delta). Differences could also be observed using confocal scanning laser microscopy. While such treatment may give rise to differing systems/structures, with new or modified organoleptic properties, the more "open" structures obtained by pressure treatment may well cause processing difficulties if subsequent reworking or moulding is required. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.
Resumo:
This study investigated and characterised transdermal permeation of bioactive agents from a topically applied Arnica montana tincture. Permeation experiments conducted over 48 h used polyclimethylsiloxane (silastic) and human epidermal membranes mounted in Franz-type diffusion cells with a methanol-water (50:50 v/v) receptor fluid. A commercially available tincture of A. montana L. derived from dried Spanish flower heads was a donor solution. Further donor solutions prepared from this stock tincture concentrated the tincture constituents 1, 2 and 10 fold and its sesquiterpene lactones 10 fold. Permeants were assayed using a high-performance liquid chromatography method. Five components permeated through silastic membranes providing peaks with relative retention factors to an internal standard (santonin) of 0.28, 1.18, 1.45, 1.98 and 2.76, respectively. No permeant was detected within 12 h of applying the Arnica tincture onto human epidermal membranes. However, after 12 h, the first two of these components were detected. These were,shown by Zimmermann reagent reaction to be sesquiterpene lactones and liquid chromatography/diode array detection/mass spectrometry indicated that these two permeants were 11,13-dihydrohelenalin (DH) analogues (methacrylate and tiglate esters). The same two components were also detected within 3 h of topical application of the 10-fold concentrated tincture and the concentrated sesquiterpene lactone extract.
Resumo:
Irradiation of 5S-5-O-tert-butyldimethylsiloxymethylfuran-2(5H)-one 1 in acetonitrile yields the C2-symmetric bis(lactone), 1S,2S,6S,7S-[3S,10S]-bis-tert-butyldimethylsiloxymethyl-4,9-dioxatricyclo[5.3.0.02,6]deca-5,8-dione 6, and a 3-substituted intramolecular product resulting from an apparent 8-endo-trig cyclisation.
Resumo:
The Phenotype MicroArray (TM) (PM) technology was used to study the metabolic characteristics of 29 Salmonella strains belonging to seven serotypes of S. enterica spp. enterica. Strains of serotypes Typhimurium (six strains among definite phage types DTs 1, 40 and 104) and Agona (two strains) were tested for 949 substrates, Enteritidis (six strains of phage type PT1), Give, Hvittingfoss, Infantis and Newport strains (two of each) were tested for 190 substrates and seven other Agona strains for 95 substrates. The strains represented 18 genotypes in pulsed-field gel electrophoresis (PFGE). Among 949 substrates, 18 were identified that could be used to differentiate between the strains of those seven serotypes or within a single serotype. Unique metabolic differences between the Finnish endemic Typhimurium DT1 and Agona strains were detected, for example, in the metabolism of d-tagatose, d-galactonic acid gamma-lactone and l-proline as a carbon source. Thus, the PM technique is a useful tool for identifying potential differential markers on a metabolic basis that could be used for epidemiological surveillance.
Resumo:
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.
Resumo:
Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualitiesfor future crop production are discussed.
Resumo:
Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.