977 resultados para Pre-salt layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effects of thermal annealing before and after cathode deposition on poly(3-hexylthiophene)(P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic cells with different cathode buffer layers. The introduction of cathode buffer layer such as lithium fluoride (LiF) and calcium oxide (CaO) in pre-annealing cells can increase the open-circuit voltage (V-oc) and the power conversion efficiency (PCE). Post thermal annealing after cathode deposition further enhanced the PCE of the cells with LiF/Al cathode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma-sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser-glazed using a continuous-wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser-glazing. The hot corrosion resistances of the plasma-sprayed and laser-glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 degrees C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as-sprayed coating, while the as-glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as-sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser-glazing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method of electrochemical growth was developed for layer-by-layer film formation and proven more advantageous than the commonly used immersion growth in obtaining more uniform multilayer assemblies, as well as being able to proceed in salt-containing solutions without competitive adsorption from the salt ions. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By electrocrystallization of 2,6-[4,5-bis(n-butylsulfanyl)-1,3-dithiol-2-ylidene]-4,8-bis(6-iodo-n-hexyloxy)-1,3,5,7-tetrathia-s-indacene (BHBDTI) and [NBu4](4)[SiMo12O40] in the mixed solvent CHCl2CH2Cl and CH3CN, the new radical-ion salt [C42H60Cl2O2S12](2)[SiMo12O40] was prepared. It was characterized by means of IR and ESR spectroscopy and X-ray diffraction. In the crystal structure, organic radical dications and silicomolybdate anions are alternatively arranged along the a axis to form a 1-D conducting layer. The organic layer consists of two isolated groups of BHBDTI divided by the (011) plane without short interatomic contacts. However, in each group, BHBDTI molecules associate with each other in a head to tail manner running along the [011] direction and face-to-face overlapping with a relative shift by approximately one TTF subunit along the long axis of the molecule and a slight shift along the short axis of the molecule with significantly short S ... S contacts. The room-temperature d.c. conductivity determined by the two-probe method is 10(-4) S cm(-1), suggesting that the compound is a semiconductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This schematic geological cross-section of Angola offshore is representative of the majority of the Atlantic-type divergent margins. It illustrates the main geological features allowing to understand the different petroleum systems occurring, particularly, in South Atlantic divergent margins : (i) Pre-Pangea rocks (Precambrian granite-gneiss basement, volcanic rocks an/ or Paleozoic sediments, more or less, metamorphosed), which lie underneath the pre-rifting unconformity (PRU), in blue in the cross-section ; (ii) The rift-type basins developed during the lengthening of the Pangea supercontinent ; (iii) The breakup unconformity (BUU), which highlight the upper limit of the rift-type basins, in which organic rich lacustrine shales with a parallel internal configuration are potential source-rocks (organic matter type I) ; (iv) The SDRs (seaward dipping reflectors), which, generally, do not have any generating hydrocarbon potential (just 5 m of lacustrine shales are known in Austral basin) ; (v) The BUU is fossilized by SDRs (subaerial volcanism) or by margin infra-salt sediments (forming the mistakenly called by some American geoscientists "sag basin") ; (vi) The Loeme salt basin, which is a twin of the Brazilian salt basin, that is to say, that both basins have always been individualized ; (vii) The transgressive (backstepping) and regressive (forestepping) phases of the post-Pangea continental encroachment cycle ; (v) The interface between these sedimentary phases, correspond to the emplacement of potential marine source-rocks (organic matter type-II) ; (vi) Potential dispersive source rocks (organic matter type III) are possible in the regressive sedimentary interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of the long-term impact of historical fire on masonry is not clearly understood. Much research focuses on the damage that is caused by fire in isolation, and omits to investigate the subsequent exploitation of weaknesses inherited from fire events. Fire can, for example, cause significant physical, chemical and mineralogical change to sandstone, which may then be exploited by background environmental factors such as salt and freeze–thaw weathering. To explore this experimentally, blocks of Peakmoor Sandstone were subjected to a real fire (as well as lime rendering/removal and frost cycle pre-treatments), and their subsequent response to salt weathering cycles was monitored by weight loss and visual assessment of the pattern of surface damage. Results illustrate that the post-fire deterioration of sandstone is strongly conditioned by fracture networks and soot cover inherited from the fire. The exploitation of fractures can lead to spalling during salt weathering cycles — this takes place as granular dissagregation steadily widens cracks and salts concentrate and crystallise in areas of inherited weakness. Soot cover can have a profound effect on subsequent performance. It reduces surface permeability and can be hydrophobic in character, limiting salt ingress and suppressing decay in the short term. However, as salt crystals concentrate under the soot crust, detachment of this layer can occur, exposing fire-damaged stone beneath. Understanding the subsequent exploitation of stone exposed to fire damage by background environmental factors (for example, salt weathering/ temperature cycling) is key to the post-fire management of stone decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a plasma discharge at low voltage (200-600 V) in saline solution is characterized using fast and standard CCD camera imaging. Vapor formation, plasma formation, and vapor collapse and subsequent pressure wave propagation are observed. If, with increasing voltage, the total energy deposited is kept approximately constant, the sequence and nature of events are similar but develop faster and more reproducibly at the higher voltages. This is attributed to the slower temporal evolution of the vapor layer at lower voltages which means a greater sensitivity to hydrodynamic instabilities at the vapor-liquid interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we present the formulation and the characterization of novel adiponitrile-based electrolytes as a function of the salt structure, concentration, and temperature for supercapacitor applications using activated carbon based electrode material. To drive this study two salts were selected, namely, the tetraethylammonium tetrafluoroborate and the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. Prior to determination of their electrochemical performance, formulated electrolytes were first characterized to quantify their thermal, volumetric, and transport properties as a function of temperature and composition. Then, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate their electrochemical properties as electrolyte for supercapacitor applications in comparison with those reported for the currently used model electrolyte based on the dissolution of 1 mol·dm–3 of tetraethylammonium tetrafluoroborate in acetonitrile. Surprisingly, excellent electrochemical performances were observed by testing adiponitrile-based electrolytes, especially those containing the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature molten salt. Differences observed on electrochemical performances between the selected adiponitrile electrolytes based on high-temperature (tetraethylammonium tetrafluoroborate) and the room-temperature (1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) molten salts are mainly driven by the salt solubility in adiponitrile, as well as by the charge and the structure of each involved species. Furthermore, in comparison with classical electrolytes, the selected adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide solution exhibits almost similar specific capacitances and lower equivalent serial resistance. These results demonstrate in fact that the adiponitrile +1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide mixture can be used for the formulation of safer electrolytes presenting a very low vapor pressure even at high temperatures to design acetonitrile-free supercapacitor devices with comparable performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the utilization of deep eutectic solvents (DESs) based on the mixture of the N-methylacetamide (MAc) with a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3) as electrolytes for carbon-based supercapacitors at 80 °C. The investigated DESs were formulated by mixing a LiX with the MAc (at xLi = 0.25). All DESs show the typical eutectic characteristic with eutectic points localized in the temperature range from −85 to −52 °C. Using thermal properties measured by differential scanning calorimetry (DSC), solid–liquid equilibrium phase diagrams of investigated LiX–MAc mixtures were then depicted and also compared with those predicted by using the COSMOThermX software. However, the transport properties of selected DESs (such as the conductivity (σ) and the fluidity (η–1)) are not very interesting at ambient temperature, while by increasing the temperature up to 80 °C, these properties become more favorable for electrochemical applications, as shown by the calculated Walden products: w = ση–1 (mS cm–1 Pa–1 s–1) (7 < w < 16 at 25 °C and 513 < w < 649 at 80 °C). This “superionicity” behavior of selected DESs used as electrolytes explains their good cycling ability, which was determined herein by cyclic voltammetry and galvanostic charge–discharge methods, with high capacities up to 380 F g–1 at elevated voltage and temperature, i.e., ΔE = 2.8 V and 80 °C for the LiTFSI–MAc mixture at xLi = 0.25, for example. The electrochemical resistances ESR (equivalent series resistance) and EDR (equivalent diffusion resistance) evaluated using electrochemical impedance spectroscopy (EIS) measurements clearly demonstrate that according to the nature of anion, the mechanism of ions adsorption can be described by pure double-layer adsorption at the specific surface or by the insertion of desolvated ions into the ultramicropores of the activated carbon material. The insertion of lithium ions is observed by the presence of two reversible peaks in the CVs when the operating voltage exceeds 2 V. Finally, the efficiency and capacitance of symmetric AC/AC systems were then evaluated to show the imbalance carbon electrodes caused by important lithium insertion at the negative and by the saturation of the positive by anions, both mechanisms prevent in fact the system to be operational. Considering the promising properties, especially their cost, hazard, and risks of these DESs series, their introduction as safer electrolytes could represent an important challenge for the realization of environmentally friendly EDLCs operating at high temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A salt weathering simulation using a mix of sodium chloride (5%) and magnesium sulphate (5%) in a salt corrosion cabinet and five granular limestones is described. Progressive surface loss from vertical exposed faces was mapped using a high resolution (sub-millimetre) object scanner (Konica Minolta Vi9i). Patterns of loss are related to surface porosity/permeability measurements obtained using a hand-held gas permeameter. Introduction of this spatial dimension into damage assessment is seen as essential for understanding the initial conditions that allow surface loss to be triggered, and changes in surface characteristics as weathering proceeds which dictate subsequent decay in space and time. Preliminary observations suggest that scanning at this high resolution is particularly valuable in quantifying very subtle trends and distortions that are pre-cursors to material loss, including surface swelling and pore filling.